Systems consisting of confined, interacting particles doing overdamped motion admit an effective description in terms of nonlinear Fokker–Planck equations. The behavior of these systems is closely related to the Sq power-law entropies and can be interpreted in terms of the Sq-based thermostatistics. The connection between overdamped systems and the Sq measures provides valuable insights on diverse physical problems, such as the dynamics of interacting vortices in type-II superconductors. The Sq-thermostatistical approach to the study of many-body systems described by nonlinear Fokker–Planck equations has been intensively explored in recent years, but most of these efforts were restricted to systems affected by time-independent external potentials. Here, we extend this treatment to systems evolving under time-dependent external forces. We establish a lower bound on the work done by these forces when they drive the system during a transformation. The bound is expressed in terms of a free energy based on the Sq entropy and is satisfied even if the driving forces are not derivable from a potential function. It constitutes a generalization, for systems governed by nonlinear Fokker–Planck equations involving general time-dependent external forces, of the H-theorem satisfied by these systems when the external forces arise from a time-independent potential.

1.
T. D.
Frank
,
Nonlinear Fokker-Planck Equations: Fundamentals and Applications
(
Springer
,
Berlin
,
2005
).
2.
J. S.
Andrade
, Jr.
,
G. F. T.
da Silva
,
A. A.
Moreira
,
F. D.
Nobre
, and
E. M. F.
Curado
,
Phys. Rev. Lett.
105
,
260601
(
2010
).
3.
J. M.
Conroy
and
H. G.
Miller
,
Phys. Rev. E
91
,
052112
(
2015
).
4.
S.
Asgarani
,
Phys. Rev. E
91
,
022104
(
2015
).
5.
P. H.
Chavanis
,
Eur. Phys. J. B
62
,
179
(
2008
).
6.
V.
Schwämmle
,
F. D.
Nobre
, and
E. M. F.
Curado
,
Phys. Rev. E
76
,
041123
(
2007
).
7.
R. S.
Wedemann
,
A. R.
Plastino
, and
C.
Tsallis
,
Phys. Rev. E
94
,
062105
(
2016
).
8.
M. S.
Ribeiro
and
F. D.
Nobre
,
Phys. Rev. E
94
,
022120
(
2016
).
9.
C. M.
Vieira
,
H. A.
Carmona
,
J. S.
Andrade
, Jr.
, and
A. A.
Moreira
,
Phys. Rev. E
93
,
060103
(
2016
).
10.
D.
Czegel
,
S. G.
Balogh
,
P.
Pollner
, and
G.
Palla
,
Sci. Rep.
8
,
1883
(
2018
).
11.
A. M. C.
Souza
,
R. F. S.
Andrade
,
F. D.
Nobre
, and
M. F. E.
Curado
,
Physica A
491
,
153
(
2018
).
12.
T.
Yamano
,
Eur. Phys. J. Plus
133
,
439
(
2018
).
13.
J.
Fuentes
,
J. L.
López
, and
O.
Obregón
,
Phys. Rev. E
102
,
012118
(
2020
).
14.
L.
Santos
,
Phys. Rev. E
103
,
032106
(
2021
).
15.
J.
Korbel
and
D. H.
Wolpert
,
New J. Phys.
23
,
033049
(
2021
).
16.
M.
Jauregui
,
A. L. F.
Lucchi
,
J. H. Y.
Passos
, and
R. S.
Mendes
,
Phys. Rev. E
104
,
034130
(
2021
).
17.
M. S.
Ribeiro
,
F. D.
Nobre
, and
E. M. F.
Curado
,
Phys. Rev. E
85
,
021146
(
2012
).
18.
G.
Combe
,
V.
Richefeu
,
M.
Stasiak
, and
A. P. F.
Atman
,
Phys. Rev. Lett.
115
,
238301
(
2015
).
19.
M.
Shiino
,
Phys. Rev. E
67
,
056118
(
2003
).
20.
P. H.
Chavanis
,
Phys. Rev. E
68
,
036108
(
2003
).
21.
T. D.
Frank
and
R.
Friedrich
,
Physica A
347
,
65
(
2005
).
22.
M. R.
Ubriaco
,
Phys. Lett. A
373
,
4017
(
2009
).
23.
E. K.
Lenzi
,
M. K.
Lenzi
,
H. V.
Ribeiro
, and
L. R.
Evangelista
,
Proc. R. Soc. A
475
,
20190432
(
2019
).
24.
E. M. F.
Curado
,
A. M. C.
Souza
,
F. D.
Nobre
, and
R. F. S.
Andrade
,
Phys. Rev. E
89
,
022117
(
2014
).
25.
W. I.
Newman
and
C.
Sagan
,
Icarus
46
,
293
(
1981
).
26.
P.
Troncoso
,
O.
Fierro
,
S.
Curilef
, and
A. R.
Plastino
,
Physica A
375
,
457
466
(
2007
).
27.
J. C.
Flores
,
Physica A
467
,
432
(
2017
).
28.
G. A.
Mendes
,
M. S.
Ribeiro
,
R. S.
Mendes
,
E. K.
Lenzi
, and
F. D.
Nobre
,
Phys. Rev. E
91
,
052106
(
2015
).
29.
F.
Gharari
,
K.
Arias-Calluari
,
F.
Alonso-Marroquin
, and
M. N.
Najafi
,
Phys. Rev. E
104
,
054140
(
2021
).
30.
M.
Mulansky
and
A.
Pikovsky
,
New J. Phys.
15
,
053015
(
2013
).
31.
C.
Tsallis
,
J. Stat. Phys.
52
,
479
(
1988
).
32.
C.
Tsallis
,
Introduction to Nonextensive Statistical Mechanics
(
Springer
,
New York
,
2009
).
33.
C.
Beck
,
Contemp. Phys.
50
,
495
(
2009
).
34.
J.
Naudts
,
Generalised Thermostatistics
(
Springer
,
London
,
2011
).
35.
P. W.
Lamberti
and
A. P.
Majtey
,
Physica A
329
,
81
(
2003
).
36.
A.
Pluchino
and
A.
Rapisarda
,
Physica A
365
,
184
(
2006
).
37.
R. S.
Wedemann
,
R.
Donangelo
, and
L. A. V.
de Carvalho
,
Chaos
19
,
015116
(
2009
).
38.
P.
Tempesta
,
Phys. Rev. E
84
,
021121
(
2011
).
39.
A. S.
Betzler
and
E. P.
Borges
,
Astron. Asprophys.
539
,
A158
(
2012
).
40.
G.
Livadiotis
and
D. J.
McComas
,
Space Sci. Rev.
175
,
183
(
2013
).
41.
D.
O’Malley
,
V. V.
Vesselinov
, and
J. H.
Cushman
,
Phys. Rev. E
91
,
042143
(
2015
).
42.
S. N.
Saadatmand
,
T.
Gould
,
E. G.
Cavalcanti
, and
J. A.
Vaccaro
,
Phys. Rev. E
101
,
060101
(
2020
).
43.
A. R.
Plastino
and
A.
Plastino
,
Physica A
222
,
347
(
1995
).
44.
F. D.
Nobre
,
M. A.
Rego-Monteiro
, and
C.
Tsallis
,
Phys. Rev. Lett.
106
,
140601
(
2011
).
45.
M. A.
Rego-Monteiro
,
J. Math. Phys.
61
,
052101
(
2020
).
46.
C.
Tsallis
and
D. J.
Bukman
,
Phys. Rev. E
54
,
R2197
(
1996
).
47.
A. M. C.
Souza
and
F. D.
Nobre
,
Phys. Rev. E
95
,
012111
(
2017
).
48.
F. D.
Nobre
,
E. M. F.
Curado
,
A. M. C.
Souza
, and
R. F. S.
Andrade
,
Phys. Rev. E
91
,
022135
(
2015
).
49.
F. D.
Nobre
,
A. M. C.
Souza
, and
E. M. F.
Curado
,
Phys. Rev. E
86
,
061113
(
2012
).
50.
H.
Leff
and
A. F.
Rex
,
Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing
(
Institute of Physics Publishing
,
Bristol
,
2003
).
51.
C.
Zander
,
A. R.
Plastino
,
A.
Plastino
,
M.
Casas
, and
S.
Curilef
,
Entropy
11
,
586
(
2009
).
52.
L. N.
De Castro
,
Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications
(
Chapman & Hall/CRC
,
Boca Raton, FL
,
2006
).
53.
L. N.
De Castro
,
Phys. Life Rev.
4
,
1
(
2007
).
54.
R.
Pasti
,
L. N.
De Castro
, and
F. J.
Von Zuben
,
Int. J. Nat. Comput. Res.
2
,
47
(
2011
).
You do not currently have access to this content.