This paper derives a non-linear diffusion equation discussing two possible applications: the ionic diffusion in glasses and temperature-dependent conductivity in semiconductors. The first equation is a logarithmic diffusion derived formally from the continuity of ion concentration, but the latter is a more phenomenological example. A power-law ansatz with time-dependent parameters maximizes a non-standard entropy and gives a set of coupled motion equations we can solve analytically. These results build the general solution to the non-linear diffusion equation.
REFERENCES
1.
J. C.
Flores
and M.
Bologna
, “Troy: A simple non-linear mathematical perspective
,” Physica A
392
, 4683
–4687
(2013
). 2.
W. I.
Newman
and C.
Sagan
, “Galactic civilizations: Population dynamics and interstellar diffusion
,” Icarus
46
, 293
–327
(1981
). 3.
S.
Curilef
, D.
González
, and C.
Calderón
, “Analyzing the 2019 Chilean social outbreak: Modelling Latin American economies
,” PLoS One
16
(8
), e0256037
(2021
). 4.
I. D.
Murray
, Mathematical Biology
(Springer-Verlag
, Berlin
, 1989
), ISBN: 978-0-387-22437-4.5.
L.
Borland
, “Option pricing formulas based on a non-Gaussian stock price model
,” Phys. Rev. Lett.
89
, 098701
(2002
). 6.
G. I.
Barenblatt
, V. M.
Entov
, and V. M.
Ryzhik
, Theory of Fluid Flows Through Natural Rocks
(Springer
, 2010
).7.
G. I.
Barenblatt
, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
(Cambridge University Press
, 2014
).8.
S.
Curilef
, “Analytical solutions for a non-linear reaction-diffusion equation
,” AIP Conf. Proc.
1558
, 1771
(2013
). 9.
P.
Troncoso
, O.
Fierro
, S.
Curilef
, and A. R.
Plastino
, “A family of evolution equations with non-linear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
,” Physica A
375
, 457
–466
(2007
). 10.
C.
Valenzuela
, L. A.
del Pino
, and S.
Curilef
, “Analytical solutions for a non-linear diffusion equation with convection and reaction
,” Physica A
416
, 439
–451
(2014
). 11.
S.
Coen
, M.
Tlidi
, Ph.
Emplit
, and M.
Haelterman
, “Convection versus dispersion in optical bistability
,” Phys. Rev. Lett.
83
, 2328
(1999
). 12.
R. G.
Walker
, C. D. W.
Wilkinson
, and J. A. H.
Wilkinson
, “Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation
,” Appl. Opt.
22
, 1923
–1928
(1983
). 13.
L.
Borland
, “Statistical signatures in times of panic: Markets as a self-organizing system
,” Quant. Finance
12
, 1367
–1379
(2012
). 14.
M.
Ma
, G.
Tocci
, A.
Michaelides
, and G.
Aeppli
, “Fast diffusion of water nanodroplets on graphene
,” Nat. Mater.
15
, 66
–71
(2016
). 15.
A.
Iomin
, “Superdiffusion of cancer on a comb structure
,” J. Phys.: Conf. Ser.
7
, 56
–67
(2005
). 16.
J.
Klafter
and I.
Sokolov
, “Anomalous diffusion spreads its wings
,” Phys. World
10
, 28
–32
(2005
). 17.
L.
Santos
, “Microscopic dynamics of non-linear Fokker-Planck equations
,” Phys. Rev. E
103
, 032106
(2021
). 18.
R. S.
Wedemann
and A. R.
Plastino
, “Non-linear Fokker-Planck approach to the Cohen-Grossberg model,” in Advances in Cognitive Neurodynamics (VII), ICCN2019 (Springer, Singapore, 2021), pp. 61–72 and references therein.19.
U.
Sabir
and C.
Tsallis
, Mathematical Foundations Of Nonextensive Statistical Mechanics
(World Scientific
, 2022
).20.
A. R.
Plastino
and A.
Plastino
, “Nonextensive statistical mechanics and generalized Fokker-Planck equation
,” Physica A
222
, 347
–354
(1995
). 21.
M.
Hayek
, “A family of analytical solutions of a non-linear diffusion-convection equation
,” Physica A
490
, 1434
–1445
(2018
). 22.
Z.
Ma
, E.
Bradley
, T.
Peacock
, J. R.
Hertzberg
, and Y.
Lee
, “Solder-assembled large MEMS flaps for fluid mixing
,” IEEE Trans. Adv. Packag.
26
, 268
(2003
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.