This paper derives a non-linear diffusion equation discussing two possible applications: the ionic diffusion in glasses and temperature-dependent conductivity in semiconductors. The first equation is a logarithmic diffusion derived formally from the continuity of ion concentration, but the latter is a more phenomenological example. A power-law ansatz with time-dependent parameters maximizes a non-standard entropy and gives a set of coupled motion equations we can solve analytically. These results build the general solution to the non-linear diffusion equation.

1.
J. C.
Flores
and
M.
Bologna
, “
Troy: A simple non-linear mathematical perspective
,”
Physica A
392
,
4683
4687
(
2013
).
2.
W. I.
Newman
and
C.
Sagan
, “
Galactic civilizations: Population dynamics and interstellar diffusion
,”
Icarus
46
,
293
327
(
1981
).
3.
S.
Curilef
,
D.
González
, and
C.
Calderón
, “
Analyzing the 2019 Chilean social outbreak: Modelling Latin American economies
,”
PLoS One
16
(
8
),
e0256037
(
2021
).
4.
I. D.
Murray
,
Mathematical Biology
(
Springer-Verlag
,
Berlin
,
1989
), ISBN: 978-0-387-22437-4.
5.
L.
Borland
, “
Option pricing formulas based on a non-Gaussian stock price model
,”
Phys. Rev. Lett.
89
,
098701
(
2002
).
6.
G. I.
Barenblatt
,
V. M.
Entov
, and
V. M.
Ryzhik
,
Theory of Fluid Flows Through Natural Rocks
(
Springer
,
2010
).
7.
G. I.
Barenblatt
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
(
Cambridge University Press
,
2014
).
8.
S.
Curilef
, “
Analytical solutions for a non-linear reaction-diffusion equation
,”
AIP Conf. Proc.
1558
,
1771
(
2013
).
9.
P.
Troncoso
,
O.
Fierro
,
S.
Curilef
, and
A. R.
Plastino
, “
A family of evolution equations with non-linear diffusion, Verhulst growth, and global regulation: Exact time-dependent solutions
,”
Physica A
375
,
457
466
(
2007
).
10.
C.
Valenzuela
,
L. A.
del Pino
, and
S.
Curilef
, “
Analytical solutions for a non-linear diffusion equation with convection and reaction
,”
Physica A
416
,
439
451
(
2014
).
11.
S.
Coen
,
M.
Tlidi
,
Ph.
Emplit
, and
M.
Haelterman
, “
Convection versus dispersion in optical bistability
,”
Phys. Rev. Lett.
83
,
2328
(
1999
).
12.
R. G.
Walker
,
C. D. W.
Wilkinson
, and
J. A. H.
Wilkinson
, “
Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: The propagation characteristics of stripe ion-exchanged waveguides; a theoretical and experimental investigation
,”
Appl. Opt.
22
,
1923
1928
(
1983
).
13.
L.
Borland
, “
Statistical signatures in times of panic: Markets as a self-organizing system
,”
Quant. Finance
12
,
1367
1379
(
2012
).
14.
M.
Ma
,
G.
Tocci
,
A.
Michaelides
, and
G.
Aeppli
, “
Fast diffusion of water nanodroplets on graphene
,”
Nat. Mater.
15
,
66
71
(
2016
).
15.
A.
Iomin
, “
Superdiffusion of cancer on a comb structure
,”
J. Phys.: Conf. Ser.
7
,
56
67
(
2005
).
16.
J.
Klafter
and
I.
Sokolov
, “
Anomalous diffusion spreads its wings
,”
Phys. World
10
,
28
32
(
2005
).
17.
L.
Santos
, “
Microscopic dynamics of non-linear Fokker-Planck equations
,”
Phys. Rev. E
103
,
032106
(
2021
).
18.
R. S.
Wedemann
and
A. R.
Plastino
, “Non-linear Fokker-Planck approach to the Cohen-Grossberg model,” in Advances in Cognitive Neurodynamics (VII), ICCN2019 (Springer, Singapore, 2021), pp. 61–72 and references therein.
19.
U.
Sabir
and
C.
Tsallis
,
Mathematical Foundations Of Nonextensive Statistical Mechanics
(
World Scientific
,
2022
).
20.
A. R.
Plastino
and
A.
Plastino
, “
Nonextensive statistical mechanics and generalized Fokker-Planck equation
,”
Physica A
222
,
347
354
(
1995
).
21.
M.
Hayek
, “
A family of analytical solutions of a non-linear diffusion-convection equation
,”
Physica A
490
,
1434
1445
(
2018
).
22.
Z.
Ma
,
E.
Bradley
,
T.
Peacock
,
J. R.
Hertzberg
, and
Y.
Lee
, “
Solder-assembled large MEMS flaps for fluid mixing
,”
IEEE Trans. Adv. Packag.
26
,
268
(
2003
).
You do not currently have access to this content.