Models of coupled oscillator networks play an important role in describing collective synchronization dynamics in biological and technological systems. The Kuramoto model describes oscillator’s phase evolution and explains the transition from incoherent to coherent oscillations under simplifying assumptions, including all-to-all coupling with uniform strength. Real world networks, however, often display heterogeneous connectivity and coupling weights that influence the critical threshold for this transition. We formulate a general mean-field theory (Vlasov–Focker Planck equation) for stochastic Kuramoto-type phase oscillator models, valid for coupling graphs/networks with heterogeneous connectivity and coupling strengths, using graphop theory in the mean-field limit. Considering symmetric odd-valued coupling functions, we mathematically prove an exact formula for the critical threshold for the incoherence–coherence transition. We numerically test the predicted threshold using large finite-size representations of the network model. For a large class of graph models, we find that the numerical tests agree very well with the predicted threshold obtained from mean-field theory. However, the prediction is more difficult in practice for graph structures that are sufficiently sparse. Our findings open future research avenues toward a deeper understanding of mean-field theories for heterogeneous systems.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
New York
,
2001
).
2.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Penguin, UK
,
2004
).
3.
G.
Buzsaki
,
Rhythms of the Brain
(
Oxford University Press
,
2006
).
4.
in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Arakai (Springer, New York, 1975).
5.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
New York
,
1984
).
6.
S. H.
Strogatz
, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,”
Physica D: Nonlin. Phenim.
143
(1–4),
1–20
(
2000
).
7.
J.
Acebrón
,
L.
Bonilla
,
C. P.
Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
(
1
),
137
185
(
2005
).
8.
J. P.
Gleeson
,
S.
Melnik
,
J. A.
Ward
,
M. A.
Porter
, and
P. J.
Mucha
, “
Accuracy of mean-field theory for dynamics on real-world networks
,”
Phys. Rev. E
85
(
2
),
026106
(
2012
).
9.
C.
Huygens
,
Oeuvres Complètes de Christiaan Huygens: L’horloge à Pendule de 1651 à 1666. Travaux Divers de Physique, de Mécanique et de Technique de 1650 à 1666. Traité des Couronnes et Des Parhélies (1662 ou 1663)
(
M. Nijhoff, Swets & Zeitlinger Publishers
,
Amsterdam
,
1967
), Vol. 17.
10.
S. H.
Strogatz
, “Norbert Wiener’s brain waves,” in Frontiers in Mathematical Biology, Lecture Notes in Biomathematics Vol. 100 (Springer, 1994), pp. 122–122.
11.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
(
1
),
15
42
(
1967
).
12.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotator modle showing phase transitions via mutual entrainment
,”
Prog. Theor. Phys.
76
(
3
),
576
581
(
1986
).
13.
S.
Gupta
,
A.
Campa
, and
S.
Ruffo
,
Statistical Physics of Synchronization
(
Springer
,
2018
).
14.
S. H.
Strogatz
and
R. E.
Mirollo
, “
Stability of incoherence in a population of coupled oscillators
,”
J. Stat. Phys.
63
,
613
635
(
1991
).
15.
J. A.
Acebron
,
L. L.
Bonilla
,
S.
De Leo
, and
R.
Spigler
, “
Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators
,”
Phys. Rev. E
57
(
5
),
5287
5290
(
1998
).
16.
R.
Mirollo
and
S. H.
Strogatz
, “
The spectrum of the partially locked state for the Kuramoto model
,”
J. Nonlinear Sci.
17
(
4
),
309
347
(
2007
).
17.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
(
16
),
2391
2394
(
1993
).
18.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
(
3
),
037113
(
2008
).
19.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
(
1
),
9
(
2020
).
20.
J.
García-Ojalvo
and
J.
Sancho
,
Noise in Spatially Extended Systems
(
Springer Science & Business Media
,
2012
).
21.
H.
Jeong
,
B.
Tombor
,
R.
Albert
,
Z. N.
Oltvai
, and
A.-L.
Barabási
, “
The large-scale organization of metabolic networks
,”
Nature
407
(
6804
),
651
654
(
2000
).
22.
D.
Brockmann
,
L.
Hufnagel
, and
T.
Geisel
, “
The scaling laws of human travel
,”
Nature
439
(
7075
),
462
465
(
2006
).
23.
C.
Castellano
,
S.
Fortunato
, and
V.
Loreto
, “
Statistical physics of social dynamics
,”
Rev. Mod. Phys.
81
(
2
),
591
646
(
2009
).
24.
E. T.
Bullmore
and
O.
Sporns
, “
Complex brain networks: Graph theoretical analysis of structural and functional systems
,”
Nat. Rev. Neurosci.
10
(
3
),
186
198
(
2009
).
25.
B.
Suki
,
A. L.
Barabasi
,
Z.
Hantos
,
F.
Peták
, and
H. E.
Stanley
, “
Avalanches and power-law behaviour in lung inflation
,”
Nature
368
,
615
618
(
1994
).
26.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
, “
Self-organized synchronization in decentralized power grids
,”
Phys. Rev. Lett.
109
(
6
),
064101
(
2012
).
27.
P.
Kaluza
,
A.
Kölzsch
,
M. T.
Gastner
, and
B.
Blasius
, “
The complex network of global cargo ship movements
,”
J. R. Soc. Interface
7
(
48
),
1093
1103
(
2010
).
28.
S. W.
Son
and
H.
Hong
, “
Thermal fluctuation effects on finite-size scaling of synchronization
,”
Phys. Rev. E
81
(
6
),
061125
(
2010
).
29.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature
410
(
6825
),
268
276
(
2001
).
30.
J. G.
Restrepo
,
E.
Ott
, and
B. R.
Hunt
, “
Emergence of coherence in complex networks of heterogeneous dynamical systems
,”
Phys. Rev. Lett.
96
(
25
),
254103
(
2006
).
31.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
4
(5),
380
395
(
2002
).
32.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
(
3
),
R67
R87
(
2015
).
33.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
, “
The size of the sync basin
,”
Chaos
16
(
1
),
015103
(
2006
).
34.
D.
Sherrington
and
S.
Kirkpatrick
, “
Solvable model of a spin-glass
,”
Phys. Rev. Lett.
35
(
26
),
1792
(
1975
).
35.
T.-W.
Ko
and
G.
Ermentrout
, “
Partially locked states in coupled oscillators due to inhomogeneous coupling
,”
Phys. Rev. E
78
(
1
),
016203
(
2008
).
36.
I. Z.
Kiss
,
Y.
Zhai
, and
J. L.
Hudson
, “
Emerging coherence in a population of chemical oscillators
,”
Science
296
(
5573
),
1676
1678
(
2002
).
37.
A. F.
Taylor
,
M. R.
Tinsley
,
F.
Wang
,
Z.
Huang
, and
K.
Showalter
, “
Dynamical quorum sensing and synchronization in large populations of chemical oscillators
,”
Science
323
(
5914
),
614
617
(
2009
).
38.
D.
Călugăru
,
J. F.
Totz
,
E. A.
Martens
, and
H.
Engel
, “
First-order synchronization transition in a large population of relaxation oscillators
,”
Sci. Adv.
6
(
39
),
eabb2637
(
2020
).
39.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
26
),
10563
10567
(
2013
).
40.
L.
Lovász
and
B.
Szegedy
, “
Limits of dense graph sequences
,”
J. Comb. Theory Ser. B
96
(
6
),
933
957
(
2006
).
41.
L.
Lovász
,
Large Networks and Graph Limits
(
American Mathematical Society
,
2012
), Vol. 60.
42.
A.
Backhausz
and
B.
Szegedy
, “
Action convergence of operators and graphs
,”
Can. J. Math.
74
(
1
),
72
121
(
2022
).
43.
H.
Chiba
and
G.
Medvedev
, “
The mean field analysis for the Kuramoto model on graphs I. The mean field equation and transition point formulas
,”
Discrete Contin. Dyn. Syst. A
39
(
1
),
131
155
(
2019
).
44.
D.
Kaliuzhnyi-Verbovetskyi
and
G. S.
Medvedev
, “
The mean field equation for the Kuramoto model on graph sequences with non-Lipschitz limit
,”
SIAM J. Math. Anal.
50
(
3
),
2441
2465
(
2018
).
45.
C.
Kuehn
, “
Network dynamics on graphops
,”
New J. Phys.
22
(
5
),
053030
(
2020
).
46.
M. A.
Gkogkas
and
C.
Kuehn
, “
Graphop mean-field limits for Kuramoto-type models
,”
SIAM J. Appl. Dyn. Syst.
21
(
1
),
248
283
(
2022
).
47.
C.
Kuehn
and
C.
Xu
, “Vlasov equations on digraph measures,” arXiv:2107.08419 (2021), pp. 1–69.
48.
M. A.
Gkogkas
,
C.
Kuehn
, and
C.
Xu
, “Mean field limits of co-evolutionary heterogeneous networks,” arXiv:2202.01742 (2022), pp. 1–51.
49.
F. A.
Rodrigues
,
T. K. D. M.
Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
98
(
2016
).
50.
H.
Sakaguchi
, “
Cooperative phenomena in coupled oscillator systems under external fields
,”
Prog. Theor. Phys.
79
(
1
),
39
46
(
1988
).
51.
Finite-size fluctuations are pseudo-random: Finitely, many oscillators move around the unit circle with distinct velocity differences and, thus, perpetually change their relative locations on the unit circle.
52.
E. B.
Davies
and
M.
Plum
, “
Spectral pollution
,”
IMA J. Numer. Anal.
24
(
3
),
417
438
(
2004
).
53.
S.
Gao
and
P. E.
Caines
, “Spectral representations of graphons in very large network systems control,” in 2019 IEEE 58th Conference on Decision and Control (CDC) (IEEE, 2019), pp. 5068–5075.
54.
G. S.
Medvedev
, “
The nonlinear heat equation on dense graphs and graph limits
,”
SIAM J. Math. Anal.
46
(
4
),
2743
2766
(
2014
).
55.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of `small-world' networks
,”
Nature
393
(
6684
),
440
442
(
1998
).
56.
G. S.
Medvedev
, “
Small-world networks of Kuramoto oscillators
,”
Phys. D
266
,
13
22
(
2014
).
57.
G. S.
Medvedev
, “
The nonlinear heat equation on W-random graphs
,”
Arch. Ration. Mech. Anal.
212
(
3
),
781
803
(
2014
).
58.
J.
Kogan
, “
A new computationally efficient method for spacing n points on a sphere
,”
Rose-Hulman Undergrad. Math. J.
18
(
2
),
5
(
2017
).
59.
Wolfram Research (2017), SpherePoints, Wolfram Language function, https://reference.wolfram.com/language/ref/SpherePoints.html (updated 2022).
60.
Note that the regular ring lattice with N = 1000 displays imperfect synchronization ( 0 r 1 ) for r = 25 [Fig. 2(b)], while r = 400 a more regular emergence of (partial) coherence [Fig. 2(c)]; indeed, this case (with zero noise) is known to exhibit multistability between the coherent branch and a so-called twisted state as long as r / N < 0.34.33 
61.
M. J.
Panaggio
and
D. M.
Abrams
, “
Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators
,”
Nonlinearity
28
(
3
),
R67
R87
(
2015
).
62.
H.
Hong
and
E. A.
Martens
, “
First-order like phase transition induced by quenched coupling disorder
,”
Chaos
32
,
063125
(
2021
).
63.
O.
Burylko
,
E. A.
Martens
, and
C.
Bick
, “Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators,” arXiv:2202.10807 (2022).
64.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
(
1
),
013106
(
2015
).
65.
P.
Ashwin
,
C.
Bick
, and
O.
Burylko
, “
Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling
,”
Front. Appl. Math. Stat.
2
,
7
(
2016
).
66.
Y.
Kuramoto
,
Nonlinear Dynamics and Chaos: Where Do We Go From Here?
(
Taylor & Francis
,
2003
).
67.
C.
Bick
,
T.
Böhle
, and
C.
Kuehn
, “Multi-population phase oscillator networks with higher-order interactions,” arXiv:2012.04943 (2020), pp. 1–30.
68.
B.
Pietras
and
A.
Daffertshofer
, “
Network dynamics of coupled oscillators and phase reduction techniques
,”
Phys. Rep.
819
,
1
105
(
2019
).
69.
G. B.
Ermentrout
, “
An adaptive model for synchrony in the firefly Pteroptyx malaccae
,”
J. Math. Biol.
29
(
6
),
571
585
(
1991
).
70.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
(
2
),
021028
(
2015
).
71.
C.
Kuehn
and
S.
Throm
, “
Power network dynamics on graphons
,”
SIAM J. Appl. Math.
79
(
4
),
1271
1292
(
2019
).
72.
H.
Chiba
,
G. S.
Medvedev
, and
M. S.
Mizuhara
, “
Bifurcations in the Kuramoto model on graphs
,”
Chaos
28
(
7
),
073109
(
2018
).
73.
C.
Kuehn
and
C.
Xu
, “Vlasov equations on directed hypergraph measures,” arXiv:2207.03806 (2022).
You do not currently have access to this content.