This research studies information properties, such as complexity and disequilibrium, in the dipole-type Hamiltonian mean-field model. A fundamental analytical assessment is the partition function in the canonical ensemble to derive statistical, thermodynamical, and information measures. They are also analytical, dependent on the number of particles, consistent with the theory for high temperatures, and rising some limitations at shallow temperatures, giving us a notion of the classicality of the system defining an interval of temperatures where the model is well working.
REFERENCES
1.
D.
Lynden-Bell
, “Statistical mechanics of violent relaxation in stellar systems
,” Mon. Not. R. Astron. Soc.
136
, 101
–121
(1967
). 2.
C.
Tsallis
, “Possible generalization of Boltzmann–Gibbs statistics
,” J. Stat. Phys.
52
, 479
–487
(1988
). 3.
C.
Beck
and E.
Cohen
, “Superstatistics
,” Physica A
322
, 267
–275
(2003
). 4.
S.
Davis
and D.
Gonzalez
, “Hamiltonian formalism and path entropy maximization
,” J. Phys. A: Math. Theor.
48
, 425003
(2015
). 5.
D.
Gonzalez
, S.
Davis
, and S.
Curilef
, “Solving equations of motion by using Monte Carlo metropolis: Novel method via random paths sampling and the maximum caliber principle
,” Entropy
22
, 916
(2020
).6.
B.
Atenas
and S.
Curilef.
, “Dynamics and thermodynamics of systems with long-range dipole-type interactions
,” Phys. Rev. E
95
, 022110
(2017
). 7.
B.
Atenas
and S.
Curilef.
, “Dynamics of the d-HMF model: Sensitive dependence on size and initial conditions
,” J. Phys.: Conf. Ser.
1043
, 012009
(2018
).8.
B.
Atenas
and S.
Curilef
, “A solvable problem in statistical mechanics: The dipole-type Hamiltonian mean field model
,” Ann. Phys.
409
, 167926
(2019
). 9.
B.
Atenas
and S.
Curilef
, “A statistical description for the quasi-stationary-states of the dipole-type Hamiltonian mean field model based on a family of Vlasov solutions
,” Physica A
568
, 125722
(2021
). 10.
Y.
Yamaguchi
, J.
Barre
, F.
Bouchet
, T.
Daouxois
, and S.
Ruffo
, “Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model
,” Physica A
337
, 36
–66
(2004
). 11.
R.
Levien
and S.
Tan
, “Double pendulum: An experiment in chaos
,” Am. J. Phys.
61
, 1038
–1044
(1993
). 12.
J.
Barrow-Green
, The Three-Body Problem
(Princeton University Press
, 2008
), pp. 726–728.13.
E.
Bertin
, Statistical Physics of Complex Systems A Concise Introduction
(Springer
, 2016
).14.
A.
Kolmogorov
, “Three approaches to the definition of the concept quantity of information
,” Probl. Peredachi Inf.
1
, 3
–11
(1965
).15.
P.
Grassberger
, “Toward a quantitative theory of self-generated complexity
,” Int. J. Theor. Phys.
25
, 907
–938
(1986
). 16.
P.
Grassberger
, “Randomness, information, and complexity,” arXiv:1208.3459 (2012).17.
S.
Wolfram
, “Computation theory of cellular automata
,” Commun. Math. Phys.
96
, 15
–57
(1984
). 18.
J.
Crutchfield
and K.
Young
, “Inferring statistical complexity
,” Phys. Rev. Lett.
63
, 105
–108
(1989
). 19.
J.
Crutchfield
, “The calculi of emergence: Computation, dynamics and induction
,” Physica D
75
, 11
–54
(1994
). 20.
R.
López
, H.
Mancini
, and X.
Calbet
, “A statistical measure of complexity
,” Phys. Lett. A
209
, 321
–326
(1995
).21.
J. S.
Shiner
, M.
Davison
, and P. T.
Landsberg
, “Simple measure for complexity
,” Phys. Rev. E
59
, 1459
–1464
(1999
). 22.
L.
Mortoza
and J.
Piqueira
, “Measuring complexity in Brazilian economic crises
,” PLoS One
12
(3
), e0173280
(2017
). 23.
D.
Stosic
, T.
Ludermir
, and T.
Stosic
, “Exploring disorder and complexity in the cryptocurrency space
,” Physica A
525
, 548
–556
(2019
). 24.
M.
Fang
, F.
Qingju
, and L.
Guang
, “Complexity-entropy causality plane analysis of air pollution series
,” Fluctuation Noise Lett.
21
, 2250011
(2022
).25.
C. M.
Valensise
, A.
Serra
, A.
Galeazzi
, G.
Etta
, M.
Cinelli
, and W.
Quattrociocchi
, “Entropy and complexity unveil the landscape of memes evolution
,” Sci. Rep.
11
, 20022
(2021
). 26.
R.
Friedrich
, “Complexity and entropy in legal language
,” Front. Phys.
9
, 671882
(2021
). 27.
T.
Sichelman
, “Quantifying legal entropy
,” Front. Phys.
9
, 665054
(2021
). 28.
C.
Brandt
and B.
Pompe
, “Permutation entropy: A natural complexity measure for time series
,” Phys. Rev. Lett.
88
, 111607
(2002
).29.
D.
Mateos
, J.
Gomez-Ramirez
, and O.
Rosso
, “Using time causal quantifiers to characterize sleep stages
,” Chaos Soliton. Fract.
146
, 110798
(2021
). 30.
F.
Falniowski
, “Entropy-based measure of statistical complexity of a game strategy
,” Entropy
22
, 470
(2020
). 31.
A.
Pessa
, R.
Zola
, M.
Perc
, and H.
Riveiro
, “Determining liquid crystal properties with ordinal networks and machine learning
,” Chaos Soliton. Fract.
154
, 111607
(2022
). 32.
F.
Pennini
and A.
Plastino
, “Disequilibrium, thermodynamic relations, and Rényi’s entropy
,” Phys. Lett. Sect. A
381
, 212
–215
(2017
). 33.
F.
Pennini
and A.
Plastino
, “Complexity and disequilibrium as telltales of superconductivity
,” Physica A
506
, 828
–834
(2018
). 34.
R.
Branada
, F.
Pennini
, and A.
Plastino
, “Statistical complexity and classical-quantum frontier
,” Physica A
511
, 18
–26
(2018
). 35.
F.
Pennini
and A.
Plastino
, “Statistical complexity of the Coriolis antipairing effect
,” Entropy
558
, e21060558
(2019
).36.
F.
Pennini
, A.
Plastino
, and V.
Apel
, “Statistical complexity in an SU(2) SU(2) many-fermion environment
,” Physica A
517
, 13
–20
(2019
). 37.
N.
Smaal
and J.
Piqueira
, “Complexity measures for Maxwell–Boltzmann distribution
,” Complexity
2021
, 9646713
(2021
). 38.
J.
Sañudo
and A.
Pacheco
, “Complexity and white-dwarf structure
,” Phys. Lett. A
373
, 807
–810
(2009
).39.
M.
de Avellar
and J.
Horvath
, “Entropy, complexity and disequilibrium in compact stars
,” Phys. Lett. A
376
, 1085
–1089
(2012
). 40.
G. J.
Gilbert
and D. C.
Fabrycky
, “An information theoretic framework for classifying exoplanetary system architectures
,” Astron. J.
159
, 281
(2020
). 41.
M.
He
, E.
Ford
, D.
Raggozine
, and D.
Carrera
, “Architectures of exoplanetary systems. III. Eccentricity and mutual inclination distributions of AMD-stable planetary systems
,” Astron. J.
160
, 276
(2020
). 42.
R.
Catalan
, J.
Garay
, and R.
Lopez-Ruiz
, “Features of the extension of a statistical measure of complexity to continuous systems
,” Phys. Rev. E
66
, 011102
(2002
).43.
D.
Frenkel
and P.
Warren
, “Gibbs, Boltzmann, and negative temperatures
,” Am. J. Phys.
83
, 163
(2015
). 44.
C.
Anteneodo
and A. R.
Plastino
, “Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity
,” Phys. Lett. A
223
, 348
–354
(1996
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.