The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular, knowing the joint distribution of the pair entropy-statistical complexity for a large class of time series models would allow statistical tests that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon’s entropy for any model under which the true normalized entropy is neither zero nor one. We obtain the asymptotic distribution from the central limit theorem (assuming large time series), the multivariate delta method, and a third-order correction of its mean value. We discuss the applicability of other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for building test statistics about Shannon’s entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon’s entropy. We applied this bilateral test to the daily maximum temperature time series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results.

1.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102-1
174102-4
(
2002
).
2.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martín
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
3.
M.
Zanin
,
L.
Zunino
,
O. A.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
4.
J.
Chen
,
C.
Lin
,
D.
Peng
, and
H.
Ge
, “
Fault diagnosis of rotating machinery: A review and bibliometric analysis
,”
IEEE Access
8
,
224985
225003
(
2020
).
5.
E.
Chagas
,
A. C.
Frery
,
O. A.
Rosso
, and
H. S.
Ramos
, “
Analysis and classification of SAR textures using information theory
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
14
,
663
675
(
2021
).
6.
L.
Zunino
and
H.
Ribeiro
, “
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
,”
Chaos, Solitons Fractals
91
,
679
688
(
2016
).
7.
H. V.
Ribeiro
,
L.
Zunino
,
E. K.
Lenzi
,
P. A.
Santoro
, and
R. S.
Mendes
, “
Complexity-entropy causality plane as a complexity measure for two-dimensional patterns
,”
PLoS One
7
,
e40689
(
2012
).
8.
E. T. C.
Chagas
,
M.
Queiroz-Oliveira
,
O. A.
Rosso
,
H. S.
Ramos
,
C. G. S.
Freitas
, and
A. C.
Frery
, “
White noise test from ordinal patterns in the entropy-complexity plane
,”
Int. Stat. Rev.
90
,
374
(
2022
).
9.
G.
Basharin
, “
On a statistical estimate for the entropy of a sequence of independent random variables
,”
Theory Probab. Its Appl.
4
,
333
336
(
1959
).
10.
K.
Hutcheson
, “
A test for comparing diversities based on the Shannon formula
,”
J. Theor. Biol.
29
,
151
154
(
1970
).
11.
K.
Hutcheson
and
L. R.
Shenton
, “
Some moments of an estimate of Shannon’s measure of information
,”
Commun. Stat.-Theory Methods
3
,
89
94
(
1974
).
12.
N. L.
Johnson
,
S.
Kotz
, and
A. W.
Kemp
, “Univariate discrete distributions,” in Wiley Series in Probability and Mathematical Statistics, 2nd ed. (John Wiley & Sons, New York, 1993).
13.
G.
Casella
and
R. L.
Berger
,
Statistical Inference
, 2nd ed. (
Duxbury
,
Pacific Grove, CA
,
2002
).
14.
P.
Mukhopadhyay
,
Complex Surveys: Analysis of Categorical Data
(
Springer
,
2016
).
15.
E. L.
Lehmann
and
G.
Casella
,
Theory of Point Estimation
(
Springer Science & Business Media
,
2006
).
16.
M.
Almiron
,
B. L.
Vieira
,
A. L. C.
Oliveira
,
A. C.
Medeiros
, and
A. C.
Frery
, “
On the numerical accuracy of spreadsheets
,”
J. Stat. Softw.
34
,
1
29
(
2010
).
17.
Mathematica version 13.0.0, Wolfram Research, Inc., Champaign, IL, 2021.
18.
D. D.
Boos
and
L. A.
Stefanski
, Essential Statistical Inference: Theory and Methods, Springer Texts in Statistics (Springer, New York, 2014).
19.
S.
Nakagawa
and
I. C.
Cuthill
, “
Effect size, confidence interval and statistical significance: A practical guide for biologists
,”
Biol. Rev.
82
,
591
605
(
2007
).
20.
M. T.
Martin
,
A.
Plastino
, and
O. A.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Physica A
369
,
439
462
(
2006
).
You do not currently have access to this content.