A vast body of experiments share the view that social norms are major factors for the emergence of fairness in a population of individuals playing the dictator game (DG). Recently, to explore which social norms are conducive to sustaining cooperation has obtained considerable concern. However, thus, far few studies have investigated how social norms influence the evolution of fairness by means of indirect reciprocity. In this study, we propose an indirect reciprocal model of the DG and consider that an individual can be assigned as the dictator due to its good reputation. We investigate the “leading eight” norms and all second-order social norms by a two-timescale theoretical analysis. We show that when role assignment is based on reputation, four of the “leading eight” norms, including stern judging and simple standing, lead to a high level of fairness, which increases with the selection intensity. Our work also reveals that not only the correct treatment of making a fair split with good recipients but also distinguishing unjustified unfair split from justified unfair split matters in elevating the level of fairness.

1.
C. F.
Camerer
,
Behavioral Game Theory: Experiments in Strategic Interaction
(
Princeton University Press
,
Princeton, NJ
,
2011
).
2.
X.
Chen
and
F.
Fu
,
Front. Phys.
6
,
139
(
2018
).
3.
J.
Wang
,
F.
Fu
, and
L.
Wang
,
Phys. Rev. E
82
,
016102
(
2010
).
4.
R.
Forsythe
,
J. L.
Horowitz
,
N. E.
Savin
, and
M.
Sefton
,
Game Econ. Behav.
6
,
347
369
(
1994
).
5.
Y.
Zhang
,
J.
Liu
, and
A.
Li
,
Complexity
2019
,
1
13
.
6.
J.
Henrich
,
J.
Ensminger
,
R.
McElreath
,
A.
Barr
,
C.
Barrett
,
A.
Bolyanatz
et al.,
Science
327
,
1480
1484
(
2010
).
7.
C.
Engel
,
Exp. Econ.
14
,
583
610
(
2011
).
8.
V.
Capraro
and
M.
Perc
,
J. R. Soc. Interface
18
,
20200880
(
2021
).
9.
E.
Fehr
and
K. M.
Schmidt
,
Q. J. Econ.
114
,
817
868
(
1999
).
10.
A.
Vostroknutov
,
Anal. Krit.
42
,
3
40
(
2020
).
11.
J.
Dana
,
D. M.
Cain
, and
R. M.
Dawes
,
Organ. Behav. Hum. Decis. Process.
100
,
193
201
(
2006
).
12.
E. P.
Lazear
,
U.
Malmendier
, and
R. A.
Weber
,
Am. Econ. J.
4
,
136
163
(
2012
).
13.
N.
Bardsley
,
Exp. Econ.
11
,
122
133
(
2008
).
14.
V.
Capraro
and
A.
Vanzo
,
Judgm. Decis. Mak.
14
,
309
317
(
2019
), available at https://journal.sjdm.org/19/190107/jdm190107.html.
15.
E.
Fehr
and
I.
Schurtenberger
,
Nat. Hum. Behav.
2
,
458
468
(
2018
).
16.
Q.
Su
,
A.
McAvoy
,
Y.
Mori
, and
J. B.
Plotkin
,
Nat. Hum. Behav.
6
,
338
348
(
2022
).
17.
K.
Hu
and
F.
Fu
,
Games
12
,
49
(
2021
).
18.
A.
Szolnoki
and
M.
Perc
,
New J. Phys.
23
,
063068
(
2021
).
19.
M.
Perc
,
J. J.
Jordan
,
D. G.
Rand
,
Z.
Wang
,
S.
Boccaletti
, and
A.
Szolnoki
,
Phys. Rep.
687
,
1
51
(
2017
).
20.
F.
Fu
and
X.
Chen
,
New J. Phys.
19
,
071002
(
2017
).
21.
C.
Castelfranchi
,
R.
Conte
, and
M.
Paolucci
,
Jasss
1
,
3
(
1998
), available at https://www.jasss.org/1/3/3.html.
22.
F. P.
Santos
,
J. M.
Pacheco
, and
F. C.
Santos
, in The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI, 2018), Vol. 32, pp. 4727–4734.
23.
F. P.
Santos
,
F. C.
Santos
, and
J. M.
Pacheco
,
Nature
555
,
242
247
(
2018
).
24.
D.
Clark
,
D.
Fudenberg
, and
A.
Wolitzky
,
Proc. Natl. Acad. Sci. U.S.A.
117
,
11344
11349
(
2020
).
25.
L.
Schmid
,
K.
Chatterjee
,
C.
Hilbe
, and
M. A.
Nowak
,
Nat. Hum. Behav.
5
,
1292
1302
(
2021
).
26.
H.
Ohtsuki
and
Y.
Iwasa
,
J. Theor. Biol.
231
,
107
120
(
2004
).
27.
J.
Andreoni
and
B. D.
Bernheim
,
Econometrica
77
,
1607
1636
(
2009
).
28.
S.
Suzuki
and
E.
Akiyama
,
J. Theor. Biol.
245
,
539
552
(
2007
).
29.
A.
Traulsen
,
J. M.
Pacheco
, and
M. A.
Nowak
,
J. Theor. Biol.
246
,
522
529
(
2007
).
30.
J.
Du
and
B.
Wang
,
Front. Phys.
6
,
67
(
2018
).
31.
Q.
Su
,
B.
Allen
, and
J. B.
Plotkin
,
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2113468118
(
2022
).
32.
A.
Szolnoki
,
M.
Mobilia
,
L.
Jiang
,
B.
Szczesny
,
A.
Rucklidge
, and
M.
Perc
,
J. R. Soc. Interface
11
,
20140735
(
2014
).
33.
C.
Hilbe
,
L.
Schmid
,
J.
Tkadlec
,
K.
Chatterjee
, and
M. A.
Nowak
,
Proc. Natl. Acad. Sci. U.S.A.
115
,
12241
12246
(
2018
).
34.
D.
Fudenberg
and
L. A.
Imhof
,
J. Econ. Theory
131
,
251
262
(
2006
).
35.
A. L.
Radzvilavicius
,
T. A.
Kessinger
, and
J. B.
Plotkin
,
Nat. Commun.
12
,
3567
(
2021
).
36.
L.
Liu
,
S.
Wang
,
X.
Chen
, and
M.
Perc
,
Chaos
28
,
103105
(
2018
).
37.
A.
Szolnoki
and
M.
Perc
,
Sci. Rep.
9
,
12575
(
2019
).
38.
M.
Perc
,
J.
Gómez-Gardenes
,
A.
Szolnoki
,
L. M.
Floría
, and
Y.
Moreno
,
J. R. Soc. Interface
10
,
20120997
(
2013
).
39.
L.
Deng
,
X.
Yuan
,
C.
Wang
, and
X.
Zhang
,
Phys. Lett. A
406
,
12737
(
2021
).
40.
L.
Zheng
,
Y.
Li
,
J.
Zhou
, and
Y.
Li
,
Physica A
585
,
126326
(
2022
).
41.
Y.
Zhang
,
X.
Chen
,
A.
Liu
, and
C.
Sun
,
Appl. Math. Comput.
321
,
641
653
(
2018
).
42.
T.
Wu
,
F.
Fu
, and
L.
Wang
,
New J. Phys.
20
,
063007
(
2018
).
43.
X. J.
Chen
and
L.
Wang
,
Phys. Rev. E
77
,
017103
(
2008
).
44.
D. G.
Rand
,
C. E.
Tarnita
,
H.
Ohtsuki
, and
M. A.
Nowak
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
2581
2586
(
2013
).
45.
X.
Deng
,
Q.
Liu
,
R.
Sadiq
, and
Y.
Deng
,
Sci. Rep.
4
,
6937
(
2014
).
46.
J. C.
Schank
,
P. E.
Smaldino
, and
M. L.
Miller
,
J. Theor. Biol.
382
,
64
73
(
2015
).
47.
J.
Snellman
,
G.
Ińiguez
,
J.
Kertész
,
R. A.
Barrio
, and
K. K.
Kaski
,
J. Complex Netw.
7
,
281
305
(
2019
).
48.
Z.
Li
,
J.
Gao
,
I. H.
Suh
, and
L.
Wang
,
Physica A
392
,
1885
1893
(
2013
).
49.
T.
Wu
,
F.
Fu
,
Y.
Zhang
, and
L.
Wang
,
Sci. Rep.
3
,
01550
(
2013
).
50.
W.
Chen
,
T.
Wu
,
Z.
Li
, and
L.
Wang
,
Physica A
519
,
319
325
(
2019
).
51.
Z.
Yang
,
Z.
Li
,
T.
Wu
, and
L.
Wang
,
Europhys. Lett.
109
,
40013
(
2015
).
52.
F.
Fu
,
C.
Hauert
,
M. A.
Nowak
, and
L.
Wang
,
Phys. Rev. E
78
,
026117
(
2008
).
53.
I.
Okada
,
Games
11
,
27
(
2020
).
54.
B.
Beersma
and
G. A.
Van Kleef
,
Soc. Psychol. Pers. Sci.
2
,
642
649
(
2011
).
55.
J.
Piazza
and
J. M.
Bering
,
Evol. Hum. Behav.
29
,
172
178
(
2008
).
56.
M. A.
Nowak
,
K. M.
Page
, and
K.
Sigmund
,
Science
289
,
1773
1775
(
2000
).
57.
J. B.
André
and
N.
Baumard
,
Evolution
65
,
1447
1456
(
2011
).
58.
N.
Masuda
and
F.
Fu
,
F1000Prime Rep.
7
,
27
(
2015
).
You do not currently have access to this content.