We consider several topologies of power grids and analyze how the addition of transmission lines affects their dynamics. The main example we are dealing with is a power grid that has a tree-like three-element motif at the periphery. We establish conditions where the addition of a transmission line in the motif enhances its stability or induces Braess’s paradox and reduces stability of the entire grid. By using bifurcation theory and nonlocal stability analysis, we show that two scenarios for Braess’s paradox are realized in the grid. The first scenario is well described and is associated with the disappearance of the synchronous mode. The second scenario has not been previously described and is associated with the reduction of nonlocal stability of the synchronous mode due to the appearance of asynchronous modes. The necessary conditions for stable operation of the grid, under the addition of a line, are derived. It is proved that the new scenario for Braess’s paradox is realized in the grids with more complex topologies even when several lines are added in their bulks.

1.
D.
Schlachtberger
,
T.
Brown
,
S.
Schramm
, and
M.
Greiner
, “
The benefits of cooperation in a highly renewable european electricity network
,”
Energy
134
,
469
481
(
2017
).
2.
T.
Brown
,
D.
Schlachtberger
,
A.
Kies
,
S.
Schramm
, and
M.
Greiner
, “
Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable european energy system
,”
Energy
160
,
720
739
(
2018
).
3.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series (Cambridge University Press, 2001).
4.
P.
Sauer
and
A.
Pai
,
Power System Dynamics and Stability
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1998
).
5.
P. M.
Anderson
and
A. A.
Fouad
,
Power System Control and Stability
(
IEEE
,
Piscataway, NJ
,
2003
).
6.
J.
Machowski
,
J.
Bialek
, and
J.
Bumby
,
Power System Dynamics: Stability and Control
(
John Wiley & Sons
,
New York
,
2008
).
7.
S. H.
Horowitz
and
A. G.
Phadke
,
Power System Relaying
(
John Wiley & Sons
,
New York
,
2008
).
8.
R.
Kogler
,
A.
Plietzsch
,
P.
Schultz
, and
F.
Hellmann
, “
Normal form for grid-forming power grid actors
,”
PRX Energy
1
,
013008
(
2022
).
9.
D.
Witthaut
,
F.
Hellmann
,
J.
Kurths
,
S.
Kettemann
,
H.
Meyer-Ortmanns
, and
M.
Timme
, “
Collective nonlinear dynamics and self-organization in decentralized power grids
,”
Rev. Mod. Phys.
94
,
015005
(
2022
).
10.
F.
Dörfler
and
F.
Bullo
, “Exploring synchronization in complex oscillator networks,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (IEEE, 2012), pp. 7157–7170.
11.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
2005
2010
(
2013
).
12.
B.
Schafer
,
T.
Pesch
,
D.
Manik
,
J.
Gollenstede
,
G.
Lin
,
H.-P.
Beck
,
D.
Witthaut
, and
M.
Timme
, “
Understanding Braess’ paradox in power grids
,”
Nat. Commun.
13
,
5396
(
2022
).
13.
D.
Braess
, “
Über ein paradoxon aus der verkehrsplanung
,”
Unternehmensforschung
12
,
258
268
(
1968
).
14.
J. E.
Cohen
and
F. P.
Kelly
, “
A paradox of congestion in a queuing network
,”
J. Appl. Probab.
27
,
730
734
(
1990
).
15.
J. E.
Cohen
and
P.
Horowitz
, “
Paradoxical behaviour of mechanical and electrical networks
,”
Nature
352
,
699
701
(
1991
).
16.
F. H. L.
Ayala
and
S.
Blumsack
, “
The Braess paradox and its impact on natural-gas-network performance
,”
Oil Gas Facilit.
2
,
52
64
(
2013
).
17.
D. J.
Case
,
Y.
Liu
,
I. Z.
Kiss
,
J. R.
Angilella
, and
A. E.
Motter
, “
Braess’s paradox and programmable behaviour in microfluidic networks
,”
Nature
574
,
1
6
(
2019
).
18.
M. G.
Pala
,
S.
Baltazar
,
P.
Liu
,
H.
Sellier
,
B.
Hackens
,
F.
Martins
,
V.
Bayot
,
X.
Wallart
,
L.
Desplanque
, and
S.
Huant
, “
Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox
,”
Phys. Rev. Lett.
108
,
076802
(
2012
).
19.
T.
Roughgarden
and
E.
Tardos
, “
How bad is selfish routing?
,”
J. ACM
49
,
236
(
2002
).
20.
T.
Roughgarden
, “
On the severity of Braess’s paradox: Designing networks for selfish users is hard
,”
J. Comput. Syst. Sci.
72
,
922
953
(
2006
).
21.
T.
Nishikawa
and
A. E.
Motter
, “
Synchronization is optimal in nondiagonalizable networks
,”
Phys. Rev. E
73
,
065106
(
2006
).
22.
T.
Nishikawa
and
A. E.
Motter
, “
Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
10342
10347
(
2010
).
23.
B.
Ravoori
,
A. B.
Cohen
,
J.
Sun
,
A. E.
Motter
,
T. E.
Murphy
, and
R.
Roy
, “
Robustness of optimal synchronization in real networks
,”
Phys. Rev. Lett.
107
,
034102
(
2011
).
24.
D.
Witthaut
and
M.
Timme
, “
Braess‘s paradox in oscillator networks, desynchronization and power outage
,”
New J. Phys.
14
,
083036
(
2012
).
25.
E. B.
Tchuisseu
,
D.
Gomila
,
P.
Colet
,
D.
Witthaut
,
M.
Timme
, and
B.
Schäfer
, “
Curing Braess’ paradox by secondary control in power grids
,”
New J. Phys.
20
,
083005
(
2018
).
26.
D.
Manik
,
M.
Timme
, and
D.
Witthaut
, “
Cycle flows and multistability in oscillatory networks
,”
Chaos
27
,
083123
(
2017
).
27.
D.
Witthaut
and
M.
Timme
, “
Nonlocal failures in complex supply networks by single link additions
,”
Eur. Phys. J. B
86
,
377
(
2013
).
28.
T.
Coletta
and
P.
Jacquod
, “
Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids
,”
Phys. Rev. E
93
,
032222
(
2016
).
29.
A. R.
Bergen
and
D. J.
Hill
, “
A structure preserving model for power system stability analysis
,”
IEEE Trans. Power Appar. Syst.
PAS-100
,
25
35
(
1981
).
30.
T.
Nishikawa
and
A. E.
Motter
, “
Comparative analysis of existing models for power-grid synchronization
,”
New J. Phys.
17
,
015012
(
2015
).
31.
A. E.
Motter
,
S. A.
Myers
,
A.
Marian
, and
N.
Takashi
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
,
191
197
(
2013
).
32.
J. M. V.
Grzybowski
,
E. E. N.
Macau
, and
T.
Yoneyama
, “Power-grids as complex networks: Emerging investigations into robustness and stability,” in Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives, edited by M. Edelman, E. E. N. Macau, and M. A. F. Sanjuan (Springer International Publishing, Cham, 2018), pp. 287–315.
33.
M.
Anvari
,
F.
Hellmann
, and
X.
Zhang
, “
Introduction to focus issue: Dynamics of modern power grids
,”
Chaos
30
,
063140
(
2020
).
34.
P.
Nardelli
,
N.
Rubido
,
C.
Wang
,
M.
batista
,
C.
Pomalaza-raez
,
P.
Cardieri
, and
M.
Latva-aho
, “
Models for the modern power grid
,”
Eur. Phys. J. Spec. Top.
223
,
2423
(
2014
).
35.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
491
(
2008
).
36.
L.
Fortuna
,
M.
Frasca
, and
A.
Sarra Fiore
, “
A network of oscillators emulating the italian high-voltage power grid
,”
Int. J. Mod. Phys. B
26
,
1246011
(
2012
).
37.
P. J.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H.
Joachim Schellnhuber
, “
How dead ends undermine power grid stability
,”
Nat. Commun.
5
,
3969
(
2014
).
38.
V. V.
Klinshov
,
S.
Kirillov
,
J.
Kurths
, and
V. I.
Nekorkin
, “
Interval stability for complex systems
,”
New J. Phys.
20
,
043040
(
2018
).
39.
D. V.
Kasatkin
and
V. I.
Nekorkin
, “
The effect of topology on organization of synchronous behavior in dynamical networks with adaptive couplings
,”
Eur. Phys. J. Spec. Top.
227
,
1051
1061
(
2018
).
40.
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
, “
What adaptive neuronal networks teach us about power grids
,”
Phys. Rev. E
103
,
042315
(
2021
).
41.
P.
Arinushkin
and
T.
Vadivasova
, “
Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia
,”
Chaos Soliton. Fract.
152
,
111343
(
2021
).
42.
V.
Khramenkov
,
A.
Dmitrichev
, and
V.
Nekorkin
, “
Partial stability criterion for a heterogeneous power grid with hub structures
,”
Chaos Soliton. Fract.
152
,
111373
(
2021
).
43.
N.
Barabash
,
V.
Belykh
,
G.
Osipov
, and
I.
Belykh
, “
Partial synchronization in the second-order Kuramoto model: An auxiliary system method
,”
Chaos
31
,
113113
(
2021
).
44.
A.
Gajduk
,
M.
Todorovski
, and
L.
Kocarev
, “
Stability of power grids: An overview
,”
Eur. Phys. J. Spec. Top.
223
,
2387
2409
(
2014
).
45.
F.
Tricomi
, “
Integrazione di un’equazione differenziale presentatasi in elettrotecnica
,”
Annali della Scuola Normale Superiore di Pisa—Classe di Scienze
Ser. 2, 2
,
1
20
(
1933
).
46.
A. A.
Andronov
,
A. A.
Vitt
, and
S. E.
Khaikin
, Theory of Oscillators, Adiwes International Series in Physics (Pergamon, 1966).
47.
L.
Belyustina
and
V.
Belykh
, “
On the global structure of the partition of the cylindrical phase space of one non-autonomus system [in Russian]
,”
Differ. Equ.
9
,
595
608
(
1973
).
48.
V.
Belyh
and
V.
Nekorkin
, “
Qualitative study of a multidimensional phase system
,”
Siber. Math. J.
18
,
511
520
(
1977
).
49.
B. N.
Brister
,
V. N.
Belykh
, and
I. V.
Belykh
, “
When three is a crowd: Chaos from clusters of kuramoto oscillators with inertia
,”
Phys. Rev. E
101
,
062206
(
2020
).
50.
A. E.
Motter
, “
Cascade control and defense in complex networks
,”
Phys. Rev. Lett.
93
,
098701
(
2004
).
51.
D.
Witthaut
and
M.
Timme
, “
Nonlocal effects and countermeasures in cascading failures
,”
Phys. Rev. E
92
,
032809
(
2015
).
52.
F.
Kaiser
,
V.
Latora
, and
D.
Witthaut
, “
Network isolators inhibit failure spreading in complex networks
,”
Nat. Commun.
12
,
3143
(
2021
).
53.
J. W.
Bialek
and
V.
Vahidinasab
, “
Tree-partitioning as an emergency measure to contain cascading line failures
,”
IEEE Trans. Power Syst.
37
,
467
475
(
2022
).
You do not currently have access to this content.