To facilitate the analysis of pattern formation and the related phase transitions in Bose–Einstein condensates, we present an explicit approximate mapping from the nonlocal Gross–Pitaevskii equation with cubic nonlinearity to a phase field crystal (PFC) model. This approximation is valid close to the superfluid–supersolid phase transition boundary. The simplified PFC model permits the exploration of bifurcations and phase transitions via numerical path continuation employing standard software. While revealing the detailed structure of the bifurcations present in the system, we demonstrate the existence of localized states in the PFC approximation. Finally, we discuss how higher-order nonlinearities change the structure of the bifurcation diagram representing the transitions found in the system.

1.
L. M.
Pismen
,
Patterns and Interfaces in Dissipative Dynamics
, 1st ed. (
Springer
,
Berlin
,
2006
).
2.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1112
(
1993
).
3.
P.
Ball
, “
In retrospect: On the six-cornered snowflake
,”
Nature
480
,
455
(
2011
).
4.
A. M.
Turing
, “
The chemical basis of morphogenesis
,”
Philos. Trans. R. Soc. London, Ser. B
23
,
237
(
1952
).
5.
J.
Swift
and
P. C.
Hohenberg
, “
Hydrodynamic fluctuations at the convective instability
,”
Phys. Rev. A
15
,
319
328
(
1977
).
6.
M.
Hilali
,
G.
Dewel
, and
P.
Borckmans
, “
Subharmonic and strong resonances through coupling with a zero mode
,”
Phys. Lett. A
217
,
263
268
(
1996
).
7.
R.
Lefever
,
N.
Barbier
,
P.
Couteron
, and
O.
Lejeune
, “
Deeply gapped vegetation patterns: On crown/root allometry, criticality and desertification
,”
J. Theor. Biol.
261
,
194
209
(
2009
).
8.
M.
Tlidi
,
P.
Mandel
, and
R.
Lefever
, “
Localized structures and localized patterns in optical bistability
,”
Phys. Rev. Lett.
73
,
640
643
(
1994
).
9.
N.
Stoop
,
R.
Lagrange
,
D.
Terwagne
,
P.
Reis
, and
J.
Dunkel
, “
Curvature-induced symmetry breaking determines elastic surface patterns
,”
Nat. Mater.
14
,
337
342
(
2015
).
10.
A. F.
Andreev
and
I. M.
Lifshitz
, “
Quantum theory of defects in crystals
,”
Sov. Phys. JETP
29
,
1107
1113
(
1969
).
11.
A. J.
Leggett
, “
Can a solid be “superfluid”?
,”
Phys. Rev. Lett.
25
,
1543
1546
(
1970
).
12.
G. V.
Chester
, “
Speculations on Bose-Einstein condensation and quantum crystals
,”
Phys. Rev. A
2
,
256
258
(
1970
).
13.
H.
Kadau
,
M.
Schmitt
,
M.
Wenzel
,
C.
Wink
,
T.
Maier
,
I.
Ferrier-Barbut
, and
T.
Pfau
, “
Observing the Rosensweig instability of a quantum ferrofluid
,”
Nature
530
,
194
197
(
2016
).
14.
M.
Schmitt
,
M.
Wenzel
,
F.
Böttcher
,
I.
Ferrier-Barbut
, and
T.
Pfau
, “
Self-bound droplets of a dilute magnetic quantum liquid
,”
Nature
539
,
259
262
(
2016
).
15.
D. S.
Petrov
, “
Quantum mechanical stabilization of a collapsing Bose-Bose mixture
,”
Phys. Rev. Lett.
115
,
155302
(
2015
).
16.
C. R.
Cabrera
,
L.
Tanzi
,
J.
Sanz
,
B.
Naylor
,
P.
Thomas
,
P.
Cheiney
, and
L.
Tarruell
, “
Quantum liquid droplets in a mixture of Bose-Einstein condensates
,”
Science
359
,
301
304
(
2018
).
17.
L.
Tanzi
,
E.
Lucioni
,
F.
Famà
,
J.
Catani
,
A.
Fioretti
,
C.
Gabbanini
,
R. N.
Bisset
,
L.
Santos
, and
G.
Modugno
, “
Observation of a dipolar quantum gas with metastable supersolid properties
,”
Phys. Rev. Lett.
122
,
130405
(
2019
).
18.
F.
Böttcher
,
J.-N.
Schmidt
,
M.
Wenzel
,
J.
Hertkorn
,
M.
Guo
,
T.
Langen
, and
T.
Pfau
, “
Transient supersolid properties in an array of dipolar quantum droplets
,”
Phys. Rev. X
9
,
011051
(
2019
).
19.
L.
Chomaz
,
D.
Petter
,
P.
Ilzhöfer
,
G.
Natale
,
A.
Trautmann
,
C.
Politi
,
G.
Durastante
,
R. M. W.
van Bijnen
,
A.
Patscheider
,
M.
Sohmen
,
M. J.
Mark
, and
F.
Ferlaino
, “
Long-lived and transient supersolid behaviors in dipolar quantum gases
,”
Phys. Rev. X
9
,
021012
(
2019
).
20.
L.
Tanzi
,
S. M.
Roccuzzo
,
E.
Lucioni
,
F.
Famà
,
A.
Fioretti
,
C.
Gabbanini
,
G.
Modugno
,
A.
Recati
, and
S.
Stringari
, “
Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas
,”
Nature
574
,
382
385
(
2019
).
21.
M.
Guo
,
F.
Böttcher
,
J.
Hertkorn
,
J.-N.
Schmidt
,
M.
Wenzel
,
H. P.
Büchler
,
T.
Langen
, and
T.
Pfau
, “
The low-energy Goldstone mode in a trapped dipolar supersolid
,”
Nature
574
,
386
389
(
2019
).
22.
G.
Natale
,
R. M. W.
van Bijnen
,
A.
Patscheider
,
D.
Petter
,
M. J.
Mark
,
L.
Chomaz
, and
F.
Ferlaino
, “
Excitation spectrum of a trapped dipolar supersolid and its experimental evidence
,”
Phys. Rev. Lett.
123
,
050402
(
2019
).
23.
M. A.
Norcia
,
C.
Politi
,
L.
Klaus
,
E.
Poli
,
M.
Sohmen
,
M. J.
Mark
,
R. N.
Bisset
,
L.
Santos
, and
F.
Ferlaino
, “
Two-dimensional supersolidity in a dipolar quantum gas
,”
Nature
596
,
357
361
(
2021
).
24.
L.
Tanzi
,
J. G.
Maloberti
,
G.
Biagioni
,
A.
Fioretti
,
C.
Gabbanini
, and
G.
Modugno
, “
Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia
,”
Science
371
,
1162
1165
(
2021
).
25.
N.
Henkel
,
R.
Nath
, and
T.
Pohl
, “
Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates
,”
Phys. Rev. Lett.
104
,
195302
(
2010
).
26.
F.
Cinti
,
P.
Jain
,
M.
Boninsegni
,
A.
Micheli
,
P.
Zoller
, and
G.
Pupillo
, “
Supersolid droplet crystal in a dipole-blockaded gas
,”
Phys. Rev. Lett.
105
,
135301
(
2010
).
27.
S.
Saccani
,
S.
Moroni
, and
M.
Boninsegni
, “
Excitation spectrum of a supersolid
,”
Phys. Rev. Lett.
108
,
175301
(
2012
).
28.
T.
Macrì
,
F.
Maucher
,
F.
Cinti
, and
T.
Pohl
, “
Elementary excitations of ultracold soft-core bosons across the superfluid-supersolid phase transition
,”
Phys. Rev. A
87
,
061602
(
2013
).
29.
T.
Macrì
,
S.
Saccani
, and
F.
Cinti
, “
Ground state and excitation properties of soft-core bosons
,”
J. Low Temp. Phys.
177
,
59
(
2014
).
30.
F.
Cinti
,
M.
Boninsegni
, and
T.
Pohl
, “
Exchange-induced crystallization of soft-core bosons
,”
New J. Phys.
16
,
033038
(
2014
).
31.
M. D.
Lukin
,
M.
Fleischhauer
,
R.
Cote
,
L. M.
Duan
,
D.
Jaksch
,
J. I.
Cirac
, and
P.
Zoller
, “
Dipole blockade and quantum information processing in mesoscopic atomic ensembles
,”
Phys. Rev. Lett.
87
,
037901
(
2001
).
32.
F.
Maucher
,
N.
Henkel
,
M.
Saffman
,
W.
Królikowski
,
S.
Skupin
, and
T.
Pohl
, “
Rydberg-induced solitons: Three-dimensional self-trapping of matter waves
,”
Phys. Rev. Lett.
106
,
170401
(
2011
).
33.
K. R.
Elder
and
M.
Grant
, “
Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals
,”
Phys. Rev. E
70
,
051605
(
2004
).
34.
H.
Emmerich
,
H.
Löwen
,
R.
Wittkowski
,
T.
Gruhn
,
G.
Tóth
,
G.
Tegze
, and
L.
Gránásy
, “
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview
,”
Adv. Phys.
61
,
665
743
(
2012
).
35.
U.
Thiele
,
A. J.
Archer
,
M. J.
Robbins
,
H.
Gomez
, and
E.
Knobloch
, “
Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity
,”
Phys. Rev. E
87
,
042915
(
2013
).
36.
S.
Sevinçli
,
N.
Henkel
,
C.
Ates
, and
T.
Pohl
, “
Nonlocal nonlinear optics in cold Rydberg gases
,”
Phys. Rev. Lett.
107
,
153001
(
2011
).
37.
F.
Maucher
,
T.
Pohl
,
S.
Skupin
, and
W.
Krolikowski
, “
Self-organization of light in optical media with competing nonlinearities
,”
Phys. Rev. Lett.
116
,
163902
(
2016
).
38.
V.
Heinonen
,
K. J.
Burns
, and
J.
Dunkel
, “
Quantum hydrodynamics for supersolid crystals and quasicrystals
,”
Phys. Rev. A
99
,
063621
(
2019
).
39.
B.
Krauskopf
and
H. M.
Osinga
, “Computing invariant manifolds via the continuation of orbit segments,” in Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems, edited by B. Krauskopf, H. M. Osinga, and J. Galán-Vioque (Springer, 2007), pp. 117–154.
40.
S.
Engelnkemper
,
S. V.
Gurevich
,
H.
Uecker
,
D.
Wetzel
, and
U.
Thiele
, “Continuation for thin film hydrodynamics and related scalar problems,” in Computational Modeling of Bifurcations and Instabilities in Fluid Mechanics, Computational Methods in Applied Sciences Vol. 50, edited by A. Gelfgat (Springer, Cham, 2019), pp. 459–501.
41.
E.
Knobloch
, “
Spatial localization in dissipative systems
,”
Annu. Rev. Condens. Matter Phys.
6
,
325
359
(
2015
).
42.
U.
Thiele
,
T.
Frohoff-Hülsmann
,
S.
Engelnkemper
,
E.
Knobloch
, and
A. J.
Archer
, “
First order phase transitions and the thermodynamic limit
,”
New J. Phys.
21
,
123021
(
2019
).
43.
M. P.
Holl
,
A. J.
Archer
,
S. V.
Gurevich
,
E.
Knobloch
,
L.
Ophaus
, and
U.
Thiele
, “
Localized states in passive and active phase-field-crystal models
,”
IMA J. Appl. Math.
86
,
896
923
(
2021
).
44.
J.
Burke
and
E.
Knobloch
, “
Localized states in the generalized Swift-Hohenberg equation
,”
Phys. Rev. E
73
,
056211
(
2006
).
45.
P.
Woods
and
A.
Champneys
, “
Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian–Hopf bifurcation
,”
Physica D
129
,
147
170
(
1999
).
46.
E.
Knobloch
, “
Localized structures and front propagation in systems with a conservation law
,”
IMA J. Appl. Math.
81
,
457
487
(
2016
).
47.
H.
Uecker
,
D.
Wetzel
, and
J. D. M.
Rademacher
, “
pde2path—A Matlab package for continuation and bifurcation in 2D elliptic systems
,”
Numer. Math. Theory Methods Appl.
7
,
58
106
(
2019
).
48.
T.
Koch
,
T.
Lahaye
,
J.
Metz
,
B.
Fröhlich
,
A.
Griesmaier
, and
T.
Pfau
, “
Stabilization of a purely dipolar quantum gas against collapse
,”
Nat. Phys.
4
,
218
222
(
2008
).
49.
M. A.
Norcia
,
C.
Politi
,
L.
Klaus
,
E.
Poli
,
M.
Sohmen
,
M. J.
Mark
,
R. N.
Bisset
,
L.
Santos
, and
F.
Ferlaino
, “
Two-dimensional supersolidity in a dipolar quantum gas
,”
Nature
596
,
357
361
(
2021
).
50.
E.
Gross
, “
Structure of a quantized vortex in boson systems
,”
Nuovo Cimento
20
,
454
477
(
1961
).
51.
L. P.
Pitaevskii
, “
Vortex lines in an imperfect Bose gas
,”
Sov. Phys. JETP
13
,
451
(
1961
). http://jetp.ras.ru/cgi-bin/dn/e_013_02_0451.pdf.
52.
W.
Krolikowski
,
O.
Bang
,
J. J.
Rasmussen
, and
J.
Wyller
, “
Modulational instability in nonlocal nonlinear Kerr media
,”
Phys. Rev. E
64
,
016612
(
2001
).
53.
A. J.
Archer
,
D. J.
Ratliff
,
A. M.
Rucklidge
, and
P.
Subramanian
, “
Deriving phase field crystal theory from dynamical density functional theory: Consequences of the approximations
,”
Phys. Rev. E
100
,
022140
(
2019
).
54.
E.
Madelung
, “
Quantentheorie in hydrodynamischer form
,”
Z. Phys.
40
,
322
326
(
1927
).
55.
R.
Carles
,
R.
Danchin
, and
J.-C.
Saut
, “
Madelung, Gross-Pitaevskii and Korteweg
,”
Nonlinearity
25
,
2843
2873
(
2012
).
56.
M. L.
Chiofalo
,
S.
Succi
, and
M. P.
Tosi
, “
Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm
,”
Phys. Rev. E
62
,
7438
7444
(
2000
).
57.
E. A.
Donley
,
N. R.
Claussen
,
S. L.
Cornish
,
J. L.
Roberts
,
E. A.
Cornell
, and
C. E.
Wieman
, “
Dynamics of collapsing and exploding Bose–Einstein condensates
,”
Nature
412
,
295
299
(
2001
).
58.
F.
Maucher
,
S.
Skupin
, and
W.
Krolikowski
, “
Collapse in the nonlocal nonlinear Schrödinger equation
,”
Nonlinearity
24
,
1987
2001
(
2011
).
59.
Note that here we always use mean density as a control parameter when giving bifurcation diagrams. The corresponding Lagrange multiplier μ is adapted accordingly and could, in principle, be used as control parameter in an alternative bifurcation diagram. However, the proper control parameter (ρ¯ or μ) is determined by the dynamics or general setup that one has in mind. If the dynamics conserves mass as in the here considered case, mean density is the correct control parameter to use as allowed perturbations do not change mass (but change chemical potential μ as it acts as Lagrange multiplier). Alternatively, if one uses the μ as control parameter, one implicitly considers a nonconserved dynamics at the fixed chemical potential. Then, perturbations are at fixed chemical potential and mass changes. The bifurcation diagrams (and stabilities of otherwise identical states) are normally different in the two cases (see, e.g., discussions in the conclusion of Ref. 35 and in Sec. 2 of Ref. 43).
60.
Note that we use the notions of first and second order phase transition in the modern sense of discontinuous and continuous transitions, respectively (not in Ehrenfest’s sense). We mainly use these notions when discussing the obtained phase diagrams. Then, first and second orders refer to the existence and absence of a coexistence region, respectively.
61.
Bifurcations to intermediate states between stripes and hexagons directly influence the amount of positive eigenvalues found for the stripe state. Figure 12 shows that depending on the spatial phase of the stripes the pattern resulting from such an intermediate might not be mirror symmetric with respect to the x axis. As the latter is required by Neumann BC the corresponding bifurcation is then missed. Therefore, Neumann BCs ultimately give rise to the artifact that stripes of different spatial phases exhibit different stabilities.
62.
M. P.
Holl
,
A. J.
Archer
, and
U.
Thiele
, “
Efficient calculation of phase coexistence and phase diagrams: Application to a binary phase-field crystal model
,”
J. Phys.: Condens. Matter
33
,
115401
(
2021
).
63.
J. D.
Crawford
,
M.
Golubitsky
,
M. G. M.
Gomes
,
E.
Knobloch
, and
I. M.
Stewart
, “Boundary conditions as symmetry constraints,” in Singularity Theory and Its Applications, Part II, Lecture Notes in Mathematics Vol. 1463 (Springer, New York, 1991), pp. 63–79.
64.
A. J.
Archer
,
M. C.
Walters
,
U.
Thiele
, and
E.
Knobloch
, “
Solidification in soft-core fluids: Disordered solids from fast solidification fronts
,”
Phys. Rev. E
90
,
042404
(
2014
).
65.
A. R. P.
Lima
and
A.
Pelster
, “
Quantum fluctuations in dipolar Bose gases
,”
Phys. Rev. A
84
,
041604
(
2011
).
66.
Y.-C.
Zhang
,
F.
Maucher
, and
T.
Pohl
, “
Supersolidity around a critical point in dipolar Bose-Einstein condensates
,”
Phys. Rev. Lett.
123
,
015301
(
2019
).
67.
Y.-C.
Zhang
,
T.
Pohl
, and
F.
Maucher
, “
Phases of supersolids in confined dipolar Bose-Einstein condensates
,”
Phys. Rev. A
104
,
013310
(
2021
).
68.
J.
Hertkorn
,
J.-N.
Schmidt
,
M.
Guo
,
F.
Böttcher
,
K. S. H.
Ng
,
S. D.
Graham
,
P.
Uerlings
,
T.
Langen
,
M.
Zwierlein
, and
T.
Pfau
, “
Pattern formation in quantum ferrofluids: From supersolids to superglasses
,”
Phys. Rev. Res.
3
,
033125
(
2021
).
69.
R.
Hoyle
,
Pattern Formation: An Introduction to Methods
, Repr. ed. (
Cambridge University Press
,
Cambridge
,
2007
).
70.
L.
Landau
, “
On the theory of phase transitions
,”
Zh. Eksp. Teor. Fiz.
7
,
19
(
1937
). http://archive.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf.
71.
P.
Subramanian
,
A. J.
Archer
,
E.
Knobloch
, and
A. M.
Rucklidge
, “
Three-dimensional icosahedral phase field quasicrystal
,”
Phys. Rev. Lett.
117
,
075501
(
2016
).
72.
A. B.
Steinberg
,
F.
Maucher
,
S. V.
Gurevich
, and
U.
Thiele
, “Data supplement for ‘Exploring bifurcations in Bose-Einstein condensates via phase field crystal models’,” Zenodo. (2022).
You do not currently have access to this content.