Our increasing dependence on infrastructure networks leads to growing concerns over the protection of these networks. Many methods have been proposed to select protective strategies by combining complex network theory and game theory. However, the misleading effect of hidden links is not considered in previous methods. This work creates an information gap between attackers and defenders by partly hiding network links to mislead the attacker in the game. We first introduce the rule of link hiding that depends on the nodes’ property, where the number of hidden links has a maximum value. Additionally, based on the Stackelberg game model, we establish an attack–defense game model with link hiding strategies considering node property and cost constraints. Finally, we conduct experiments in a scale-free network and an existing power grid. The experimental results show that the defender tends to combine first-mover advantage and link hiding to get a better payoff under more different costs of the nodes. Hiding half of the links in the existing power grid can effectively reduce network damage by about 22.8% on average, with the two sides investing the same resources. The effect of link hiding could be more obvious when the attacker owns more resources than the defender. When an attacker employs the high-degree attacking strategy, the proposed link hiding method can help the defender reduce the damage to the network by 12.2% compared to the link reconnecting method.

1.
T.
Tsvetanov
and
S.
Slaria
, “
The effect of the colonial pipeline shutdown on gasoline prices
,”
Econ. Lett.
209
,
110122
(
2021
).
2.
B. C.
Ezell
,
S. P.
Bennett
,
D.
Von Winterfeldt
,
J.
Sokolowski
, and
A. J.
Collins
, “
Probabilistic risk analysis and terrorism risk
,”
Risk Anal.: Int. J.
30
,
575
589
(
2010
).
3.
G. G.
Brown
and
L. A.
Cox
Jr., “
How probabilistic risk assessment can mislead terrorism risk analysts
,”
Risk Anal.: Int. J.
31
,
196
204
(
2011
).
4.
B.
Golany
,
E. H.
Kaplan
,
A.
Marmur
, and
U. G.
Rothblum
, “
Nature plays with dice–terrorists do not: Allocating resources to counter strategic versus probabilistic risks
,”
Eur. J. Oper. Res.
192
,
198
208
(
2009
).
5.
E.
Pichler
and
A. M.
Shapiro
, “
Public goods games on adaptive coevolutionary networks
,”
Chaos
27
,
073107
(
2017
).
6.
W.
Jeong
and
U.
Yu
, “
Critical phenomena and strategy ordering with hub centrality approach in the aspiration-based coordination game
,”
Chaos
31
,
093114
(
2021
).
7.
Z.
Xu
,
R.
Li
, and
L.
Zhang
, “
The role of memory in human strategy updating in optional public goods game
,”
Chaos
29
,
043128
(
2019
).
8.
G.
Brown
,
M.
Carlyle
,
J.
Salmerón
, and
K.
Wood
, “
Defending critical infrastructure
,”
Interfaces
36
,
530
544
(
2006
).
9.
J.
Pita
,
M.
Jain
,
J.
Marecki
,
F.
Ordóñez
,
C.
Portway
,
M.
Tambe
,
C.
Western
,
P.
Paruchuri
, and
S.
Kraus
, “Deployed armor protection: The application of a game theoretic model for security at the Los Angeles International Airport,” in Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems: Industrial Track (IFAAMAS, 2008), pp. 125–132.
10.
L.
Zhang
and
G.
Reniers
, “
A game-theoretical model to improve process plant protection from terrorist attacks: Process plant protection from terrorist attacks
,”
Risk Anal.
36
,
2285
2297
(
2016
).
11.
Q.
Feng
,
H.
Cai
,
Z.
Chen
,
X.
Zhao
, and
Y.
Chen
, “
Using game theory to optimize allocation of defensive resources to protect multiple chemical facilities in a city against terrorist attacks
,”
J. Loss Prev. Process Ind.
43
,
614
628
(
2016
).
12.
Q.
Feng
,
H.
Cai
, and
Z.
Chen
, “
Using game theory to optimize the allocation of defensive resources on a city scale to protect chemical facilities against multiple types of attackers
,”
Reliab. Eng. Syst. Saf.
191
,
105900
(
2019
).
13.
X.
Zhang
,
S.
Ding
,
B.
Ge
,
B.
Xia
, and
W.
Pedrycz
, “
Resource allocation among multiple targets for a defender-attacker game with false targets consideration
,”
Reliab. Eng. Syst. Saf.
211
,
107617
(
2021
).
14.
P.
Guan
,
M.
He
,
J.
Zhuang
, and
S. C.
Hora
, “
Modeling a multitarget attacker–defender game with budget constraints
,”
Decis. Anal.
14
,
87
107
(
2017
).
15.
E.
Bompard
,
C.
Gao
,
R.
Napoli
,
A.
Russo
,
M.
Masera
, and
A.
Stefanini
, “
Risk assessment of malicious attacks against power systems
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
39
,
1074
1085
(
2009
).
16.
M.
Baykal-Guersoy
,
Z.
Duan
,
H. V.
Poor
, and
A.
Garnaev
, “
Infrastructure security games
,”
Eur. J. Oper. Res.
239
,
469
478
(
2014
).
17.
P.-Y.
Chen
,
S.-M.
Cheng
, and
K.-C.
Chen
, “
Smart attacks in smart grid communication networks
,”
IEEE Commun. Mag.
50
,
24
29
(
2012
).
18.
Y.-P.
Li
,
S.-Y.
Tan
,
Y.
Deng
, and
J.
Wu
, “
Attacker-defender game from a network science perspective
,”
Chaos
28
,
051102
(
2018
).
19.
Y.
Li
,
Y.
Deng
,
Y.
Xiao
, and
J.
Wu
, “
Attack and defense strategies in complex networks based on game theory
,”
J. Syst. Sci. Complexity
32
,
1630
1640
(
2019
).
20.
Y.
Li
,
Y.
Xiao
,
Y.
Li
, and
J.
Wu
, “
Which targets to protect in critical infrastructures—A game-theoretic solution from a network science perspective
,”
IEEE Access
6
,
56214
56221
(
2018
).
21.
Q.
Li
,
M.
Li
,
J.
Gan
, and
C.
Guo
, “
A game-theoretic approach for the location of terror response facilities with both disruption risk and hidden information
,”
Int. Trans. Oper. Res.
28
,
1864
1889
(
2021
).
22.
B.
Liu
and
J.
Sun
, “Applying Stackelberg active deception game for network defense: From the perspective of imperfect network node information,” in Proceedings of the 2021 International Conference on Control and Intelligent Robotics (ACM, Guangzhou, 2021), pp. 28–32.
23.
D.
Liu
and
Z.
Zhang
, “
Research on robustness of critical information infrastructure based on attack-defensive game model
,”
J. Phys.: Conf. Ser.
1738
,
012112
(
2021
).
24.
C.
Zeng
,
B.
Ren
,
M.
Li
,
H.
Liu
, and
J.
Chen
, “
Stackelberg game under asymmetric information in critical infrastructure system: From a complex network perspective
,”
Chaos
29
,
083129
(
2019
).
25.
C.
Zeng
,
B.
Ren
,
H.
Liu
, and
J.
Chen
, “
Applying the Bayesian Stackelberg active deception game for securing infrastructure networks
,”
Entropy
21
,
909
(
2019
).
26.
E.-Y.
Yu
,
D.-B.
Chen
, and
J.-Y.
Zhao
, “
Identifying critical edges in complex networks
,”
Sci. Rep.
8
,
1
8
(
2018
).
27.
T.
Başar
and
G. J.
Olsder
,
Dynamic Noncooperative Game Theory
(
SIAM
,
1998
).
28.
S.
Dereich
and
P.
Mörters
, “
Random networks with sublinear preferential attachment: The giant component
,”
Ann. Probab.
41
,
329
384
(
2013
).
29.
J.
Wu
,
M.
Barahona
,
Y.-J.
Tan
, and
H.-Z.
Deng
, “
Spectral measure of structural robustness in complex networks
,”
IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
41
,
1244
1252
(
2011
).
30.
C. M.
Schneider
,
A. A.
Moreira
,
J. S.
Andrade
,
S.
Havlin
, and
H. J.
Herrmann
, “
Mitigation of malicious attacks on networks
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
3838
3841
(
2011
).
31.
V.
Conitzer
and
T.
Sandholm
, “Computing the optimal strategy to commit to,” in Proceedings of the 7th ACM Conference on Electronic Commerce—EC ’06 (ACM Press, Ann Arbor, 2006), pp. 82–90.
32.
M.
Achache
, “
A new primal-dual path-following method for convex quadratic programming
,”
Comput. Appl. Math.
25
,
97
110
(
2006
).
33.
G.
Bagler
, “
Analysis of the airport network of India as a complex weighted network
,”
Physica A
387
,
2972
2980
(
2008
).
34.
H.
Soh
,
S.
Lim
,
T.
Zhang
,
X.
Fu
,
G. K. K.
Lee
,
T. G. G.
Hung
,
P.
Di
,
S.
Prakasam
, and
L.
Wong
, “
Weighted complex network analysis of travel routes on the Singapore public transportation system
,”
Physica A
389
,
5852
5863
(
2010
).
35.
K.
Soramäki
,
M. L.
Bech
,
J.
Arnold
,
R. J.
Glass
, and
W. E.
Beyeler
, “
The topology of interbank payment flows
,”
Physica A
379
,
317
333
(
2007
).
36.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
37.
D. U.
Case
, “
Analysis of the cyber attack on the Ukrainian power grid
,”
Electr. Inf. Shar. Anal. Center
388
,
1
29
(
2016
).
38.
R.
Meier
,
P.
Tsankov
,
V.
Lenders
,
L.
Vanbever
, and
M.
Vechev
, “{NetHide}: Secure and practical network topology obfuscation,” in 27th USENIX Security Symposium (USENIX Security 18) (USENIX, 2018), pp. 693–709.
39.
P.
Choudekar
,
S.
Sinha
, and
A.
Siddiqui
, “Congestion management of IEEE 30 bus system using thyristor controlled series compensator,” in 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC) (IEEE, 2018), pp. 649–653.
40.
Y.
Li
,
S.
Qiao
,
Y.
Deng
, and
J.
Wu
, “
Stackelberg game in critical infrastructures from a network science perspective
,”
Physica A
521
,
705
714
(
2019
).
41.
Y.
Hayashi
and
J.
Matsukubo
, “
Improvement of the robustness on geographical networks by adding shortcuts
,”
Physica A
380
,
552
562
(
2007
).
42.
J.
Li
,
D.
Zhao
,
B.
Ge
,
J.
Jiang
, and
K.
Yang
, “
Disintegration of operational capability of heterogeneous combat networks under incomplete information
,”
IEEE Trans. Syst. Man Cybern.: Syst.
50
,
5172
5179
(
2018
).
You do not currently have access to this content.