The low-frequency variability of the extratropical atmosphere involves hemispheric-scale recurring, often persistent, states known as teleconnection patterns or regimes, which can have a profound impact on predictability on intra-seasonal and longer timescales. However, reliable data-driven identification and dynamical representation of such states are still challenging problems in modeling the dynamics of the atmosphere. We present a new method, which allows us both to detect recurring regimes of atmospheric variability and to obtain dynamical variables serving as an embedding for these regimes. The method combines two approaches from nonlinear data analysis: partitioning a network of recurrent states with studying its properties by the recurrence quantification analysis and the kernel principal component analysis. We apply the method to study teleconnection patterns in a quasi-geostrophical model of atmospheric circulation over the extratropical hemisphere as well as to reanalysis data of geopotential height anomalies in the mid-latitudes of the Northern Hemisphere atmosphere in the winter seasons from 1981 to the present. It is shown that the detected regimes as well as the obtained set of dynamical variables explain large-scale weather patterns, which are associated, in particular, with severe winters over Eurasia and North America. The method presented opens prospects for improving empirical modeling and long-term forecasting of large-scale atmospheric circulation regimes.

1.
A.
Hannachi
,
Patterns Identification and Data Mining in Weather and Climate
(
Springer
,
Cham
,
2021
).
2.
P.
Sura
and
A.
Hannachi
, “
Perspectives of non-gaussianity in atmospheric synoptic and low-frequency variability
,”
J. Clim.
28
,
5091
5114
(
2015
).
3.
A.
Hannachi
,
D. M.
Straus
,
C. L. E.
Franzke
,
S.
Corti
, and
T.
Woollings
, “
Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere
,”
Rev. Geophys.
55
,
199
234
, https://doi.org/10.1002/2015RG000509 (
2017
).
4.
J. M.
Wallace
and
D. S.
Gutzler
, “
Teleconnections in the geopotential height field during the northern hemisphere winter
,”
Mon. Weather Rev.
109
,
784
812
(
1981
).
5.
A. G.
Barnston
and
R. E.
Livezey
, “
Classification, seasonality and persistence of low-frequency atmospheric circulation patterns
,”
Mon. Weather Rev.
115
,
1083
1126
(
1987
).
6.
C.
Cassou
, “
Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic oscillation
,”
Nature
455
,
523
527
(
2008
).
7.
M.
Ghil
and
A. W.
Robertson
, “
“Waves” vs. “particles” in the atmosphere’s phase space: A pathway to long-range forecasting?
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
2493
2500
(
2002
).
8.
C.
Franzke
and
S. B.
Feldstein
, “
The continuum and dynamics of Northern Hemisphere teleconnection patterns
,”
J. Atmos. Sci.
62
,
3250
3267
(
2005
).
9.
S. J.
Colucci
and
D. P.
Baumhefner
, “
Initial weather regimes as predictors of numerical 30-day mean forecast accuracy
,”
J. Atmos. Sci.
49
,
1652
1671
(
1992
).
10.
R. M.
Dole
, “
Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Structure
,”
Mon. Weather Rev.
114
,
178
207
(
1986
).
11.
L.
Pandolfo
, “Observational aspects of the low-frequency intraseasonal variability of the atmosphere in middle latitudes,”
Advances in Geophysics
(Elsevier, 1993), pp. 93–174.
12.
T.
Woollings
,
A.
Hannachi
,
B.
Hoskins
, and
A.
Turner
, “
A regime view of the North Atlantic oscillation and its response to anthropogenic forcing
,”
J. Clim.
23
,
1291
1307
(
2010
).
13.
T.
Woollings
,
A.
Hannachi
, and
B.
Hoskins
, “
Variability of the North Atlantic eddy-driven jet stream
,”
Q. J. R. Meteorol. Soc.
136
,
856
868
(
2010
).
14.
A.
Hannachi
and
W.
Iqbal
, “
Bimodality of hemispheric winter atmospheric variability via average flow tendencies and kernel EOFS
,”
Tellus A: Dyn. Meteorol. Oceanogr.
71
,
1633847
(
2019
).
15.
A.
Hannachi
and
W.
Iqbal
, “
On the nonlinearity of winter Northern Hemisphere atmospheric variability
,”
J. Atmos. Sci.
76
,
333
356
(
2019
).
16.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
17.
J. B.
Tenenbaum
,
V.
de Silva
, and
J. C.
Langford
, “
A global geometric framework for nonlinear dimensionality reduction
,”
Science
290
,
2319
2323
(
2000
).
18.
A.
Hannachi
and
A. G.
Turner
, “
20th century intraseasonal Asian monsoon dynamics viewed from isomap
,”
Nonlinear Process. Geophys.
20
,
725
741
(
2013
).
19.
M. E. J.
Newman
, “
Modularity and community structure in networks
,”
Proc. Natl. Acad. Sci. U.S.A.
103
,
8577
8582
(
2006
).
20.
N.
Marwan
,
J. F.
Donges
,
Y.
Zou
,
R. V.
Donner
, and
J.
Kurths
, “
Complex network approach for recurrence analysis of time series
,”
Phys. Lett. A.
373
,
4246
4254
(
2009
).
21.
N.
Marwan
,
M.
Carmen Romano
,
M.
Thiel
, and
J.
Kurths
, “
Recurrence plots for the analysis of complex systems
,”
Phys. Rep.
438
,
237
329
(
2007
).
22.
B.
Schölkopf
,
A.
Smola
, and
K.-R.
Müller
, “
Nonlinear component analysis as a kernel eigenvalue problem
,”
Neural Comput.
10
,
1299
1319
(
1998
).
23.
B. E.
Boser
,
I. M.
Guyon
, and
V. N.
Vapnik
, “A training algorithm for optimal margin classifiers,” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Series and number COLT ’92 (Association for Computing Machinery, New York, NY, 1992), pp. 144–152.
24.
I. J.
Schoenberg
, “
Metric spaces and positive definite functions
,”
Trans. Am. Math. Soc.
44
,
522
(
1938
).
25.
D.
Reynolds
, “Gaussian mixture models,” in Encyclopedia of Biometrics, edited by S. Z. Li and A. Jain (Springer US, Boston, MA, 2009), pp. 659–663.
26.
B. W.
Silverman
,
Density Estimation for Statistics and Data Analysis
(
Chapman & Hall
,
London
,
1986
).
27.
M. E. J.
Newman
and
M.
Girvan
, “
Finding and evaluating community structure in networks
,”
Phys. Rev. E
69
,
026113
(
2004
).
28.
In practice, however, we may consider using a threshold slightly above zero to avoid “too thin” separation if, for example, further splitting gives much less modularity increment as compared with the previous splits.
29.
T.
Braun
,
V. R.
Unni
,
R.
Sujith
,
J.
Kurths
, and
N.
Marwan
, “
Detection of dynamical regime transitions with lacunarity as a multiscale recurrence quantification measure
,”
Nonlinear Dyn.
104
,
1
19
(
2021
).
30.
N.
Marwan
,
S.
Schinkel
, and
J.
Kurths
, “
Recurrence plots 25 years later—Gaining confidence in dynamical transitions
,”
Europhys. Lett.
101
,
20007
(
2013
).
31.
J.
Marshall
and
F.
Molteni
, “
Toward a dynamical understanding of planetary-scale flow regimes
,”
J. Atmos. Sci.
50
,
1792
1818
(
1993
).
32.
S.
Vannitsem
and
C.
Nicolis
, “
Lyapunov vectors and error growth patterns in a T21L3 quasigeostrophic model
,”
J. Atmos. Sci.
54
,
347
361
(
1997
).
33.
S.
Corti
,
A.
Giannini
,
S.
Tibaldi
, and
F.
Molteni
, “
Patterns of low-frequency variability in a three-level quasi-geostrophic model
,”
Climate Dyn.
13
,
883
904
(
1997
).
34.
D.
Kondrashov
,
K.
Ide
, and
M.
Ghil
, “
Weather regimes and preferred transition paths in a three-level quasigeostrophic model
,”
J. Atmos. Sci.
61
,
568
587
(
2004
).
35.
A.
Seleznev
,
D.
Mukhin
,
A.
Gavrilov
,
E.
Loskutov
, and
A.
Feigin
, “
Bayesian framework for simulation of dynamical systems from multidimensional data using recurrent neural network
,”
Chaos
29
,
123115
(
2019
).
36.
E.
Kalnay
,
M.
Kanamitsu
,
R.
Kistler
,
W.
Collins
,
D.
Deaven
,
L.
Gandin
,
M.
Iredell
,
S.
Saha
,
G.
White
,
J.
Woollen
,
Y.
Zhu
,
A.
Leetmaa
,
R.
Reynolds
,
M.
Chelliah
,
W.
Ebisuzaki
,
W.
Higgins
,
J.
Janowiak
,
K. C.
Mo
,
C.
Ropelewski
,
J.
Wang
,
R.
Jenne
, and
D.
Joseph
, “
The NCEP/NCAR 40-year reanalysis project
,”
Bull. Am. Meteorol. Soc.
77
,
437
471
(
1996
).
37.
N.
Marwan
, “
How to avoid potential pitfalls in recurrence plot based data analysis
,”
Inter. J. Bifurcation Chaos
21
,
1003
1017
(
2011
).
38.
D. W. J.
Thompson
and
J. M.
Wallace
, “
The Arctic oscillation signature in the wintertime geopotential height and temperature fields
,”
Geophys. Res. Lett.
25
,
1297
1300
, https://doi.org/10.1029/98GL00950 (
1998
).
39.
K.
Haines
and
A.
Hannachi
, “
Weather regimes in the pacific from a GCM
,”
J. Atmos. Sci.
52
,
2444
2462
(
1995
).
40.
A.
Hannachi
, “
Low-frequency variability in a GCM: Three-dimensional flow regimes and their dynamics
,”
J. Clim.
10
,
1357
1379
(
1997
).
41.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer
,
New York
,
1987
).
42.
D.
Mukhin
,
A.
Gavrilov
,
A.
Feigin
,
E.
Loskutov
, and
J.
Kurths
, “
Principal nonlinear dynamical modes of climate variability
,”
Sci. Rep.
5
,
15510
(
2015
).
43.
D.
Mukhin
,
A.
Gavrilov
,
E.
Loskutov
,
A.
Feigin
, and
J.
Kurths
, “
Nonlinear reconstruction of global climate leading modes on decadal scales
,”
Climate Dyn.
51
,
2301
2310
(
2018
).
44.
J. M.
Wallace
, “
North Atlantic oscillatiodannular mode: Two paradigms–one phenomenon
,”
Q. J. R. Meteorol. Soc.
126
,
791
805
(
2000
).
45.
S. B.
Feldstein
and
C.
Franzke
, “
Are the North Atlantic oscillation and the northern annular mode distinguishable?
,”
J. Atmos. Sci.
63
,
2915
2930
(
2006
).
46.
P.
Dai
and
B.
Tan
, “
The nature of the Arctic oscillation and diversity of the extreme surface weather anomalies it generates
,”
J. Clim.
30
,
5563
5584
(
2017
).
47.
We use air temperature data at 0.995 sigma level taken from the NCEP/NCAR reanalysis.36 The anomalies were produced by deseasonalizing in the same way as with the HGT data (see Sec. III B).
48.
T.
Onskog
,
C.
Franzke
, and
A.
Hannachi
, “
Nonlinear time series models for the North Atlantic oscillation
,”
Adv. Stat. Climatol. Meteorol. Oceanogr.
6
,
141
157
(
2020
).
49.
R. R.
Coifman
and
S.
Lafon
, “
Diffusion maps
,”
Appl. Comput. Harmonic Anal.
21
,
5
30
(
2006
).
50.
A.
Gavrilov
,
A.
Seleznev
,
D.
Mukhin
,
E.
Loskutov
,
A.
Feigin
, and
J.
Kurths
, “
Linear dynamical modes as new variables for data-driven ENSO forecast
,”
Climate Dyn.
52
,
2199
2216
(
2019
).
51.
D.
Mukhin
,
A.
Gavrilov
,
E.
Loskutov
,
J.
Kurths
, and
A.
Feigin
, “
Bayesian data analysis for revealing causes of the middle pleistocene transition
,”
Sci. Rep.
9
,
7328
(
2019
).
52.
NCEP-NCAR Reanalysis 1 data provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov.
53.
A.
Hannachi
and
A.
O’Neill
, “
Atmospheric multiple equilibria and non-gaussian behaviour in model simulations
,”
Q. J. R. Meteorol. Soc.
127
,
939
958
(
2001
).
54.
S.
Kravtsov
,
D.
Kondrashov
, and
M.
Ghil
, “
Multilevel regression modeling of nonlinear processes: Derivation and applications to climatic variability
,”
J. Clim.
18
,
4404
4424
(
2005
).

Supplementary Material

You do not currently have access to this content.