With the popularization of social network analysis, information diffusion models have a wide range of applications, such as viral marketing, publishing predictions, and social recommendations. The emergence of multiplex social networks has greatly enriched our daily life; meanwhile, identifying influential edges remains a significant challenge. The key problem lies that the edges of the same nodes are heterogeneous at different layers of the network. To solve this problem, we first develop a general information diffusion model based on the adjacency tensor for the multiplex network and show that the n-mode singular value can control the level of information diffusion. Then, to explain the suppression of information diffusion through edge deletion, efficient edge eigenvector centrality is proposed to identify the influence of heterogeneous edges. The numerical results from synthetic networks and real-world multiplex networks show that the proposed strategy outperforms some existing edge centrality measures. We devise an experimental strategy to demonstrate that influential heterogeneous edges can be successfully identified by considering the network layer centrality, and the deletion of top edges can significantly reduce the diffusion range of information across multiplex networks.

1.
R.
Interdonato
,
M.
Magnani
,
D.
Perna
,
A.
Tagarelli
, and
D.
Vega
, “
Multilayer network simplification: Approaches, models and methods
,”
Comput. Sci. Rev.
36
,
100246
(
2020
).
2.
T. G.
Crainic
,
B.
Gendron
, and
M. R. A.
Kazemzadeh
, “
A taxonomy of multilayer network design and a survey of transportation and telecommunication applications
,”
Eur. J. Oper. Res.
303
,
1
13
(
2022
).
3.
K.
Wu
,
C.
Wang
, and
J.
Liu
, “
Evolutionary multitasking multilayer network reconstruction
,”
IEEE Trans. Cybern.
(published online, 2021).
4.
A. C.
Kinsley
,
G.
Rossi
,
M. J.
Silk
, and
K.
Vanderwaal
, “
Multilayer and multiplex networks: An introduction to their use in veterinary epidemiology
,”
Front. Vet. Sci.
7
,
596
(
2020
).
5.
H.
Fang
,
X.
Wang
, and
L.
Hanzo
, “
Learning-aided physical layer authentication as an intelligent process
,”
IEEE Trans. Commun.
67
(
3
),
2260
2273
(
2019
).
6.
P.
Wang
,
L. T.
Yang
,
G.
Qian
, and
F.
Lu
, “
The cyber-physical-social transition tensor service framework
,”
IEEE Trans. Sustain. Comput.
6
(
3
),
481
492
(
2021
).
7.
P.
Wang
,
L. T.
Yang
,
G.
Qian
, and
F.
Lu
, “
HO-OTSVD: A novel tensor decomposition and its incremental decomposition for cyber–physical–social networks (CPSN)
,”
IEEE Trans. Netw. Sci. Eng.
7
(
2
),
713
725
(
2020
).
8.
P.
Wang
,
L. T.
Yang
,
J.
Li
,
J.
Chen
, and
S.
Hu
, “
Data fusion in cyber-physical-social systems: State-of-the-art and perspectives
,”
Inf. Fusion
51
,
42
57
(
2019
).
9.
G.
Tong
,
R.
Wang
,
Z.
Dong
, and
X.
Li
, “
Time-constrained adaptive influence maximization
,”
IEEE Trans. Comput. Soc. Syst.
8
(
1
),
33
44
(
2021
).
10.
J.
Tang
,
R.
Zhang
,
P.
Wang
,
Z.
Zhao
,
L.
Fan
, and
X.
Liu
, “
A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks
,”
Knowl.-Based Syst.
187
,
104833
(
2020
).
11.
X.
Zhou
,
R.
Zhang
,
K.
Yang
,
C.
Yang
, and
T.
Huang
, “
Using hybrid normalization technique and state transition algorithm to VIKOR method for influence maximization problem
,”
Neurocomputing
410
,
41
50
(
2020
).
12.
S.
Banerjee
,
M.
Jenamani
, and
D. K.
Pratihar
, “
A survey on influence maximization in a social network
,”
Knowl. Inf. Syst.
64
,
3417
3455
(
2020
).
13.
D.
Kempe
,
J.
Kleinberg
, and
É.
Tardos
, “Maximizing the spread of influence through a social network,” in Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (Association for Computing Machinery, 2003), pp. 137–146.
14.
D. A.
Vega-Oliveros
,
L. F.
Costa
, and
F. A.
Rodrigues
, “
Influence maximization by rumor spreading on correlated networks through community identification
,”
Commun. Nonlinear Sci. Numer. Simul.
83
,
105094
(
2020
).
15.
Y.
Li
,
D.
Zhang
, and
K.-L.
Tan
, “
Real-time targeted influence maximization for online advertisements
,”
Proc. VLDB Endow.
8
(
10
),
1070
1081
(
2015
).
16.
B.
Zhao
,
C.
Xu
,
S.
Liu
,
J.
Zhao
, and
L.
Li
, “A congestion diffusion model with influence maximization for traffic bottlenecks identification in metrocity scales,” in
Proceedings of the 7th IEEE International Conference on Big Data (Big Data)
(
IEEE
,
2019
), pp. 1717–1722.
17.
L. C.
Freeman
, “
A set of measures of centrality based on betweenness
,”
Sociometry
40
,
35
41
(
1977
).
18.
L. C.
Freeman
, “
Centrality in social networks conceptual clarification
,”
Soc. Netw.
1
,
215
239
(
1978
).
19.
W.
Lin
,
S.
Zhou
,
M.
Li
, and
G.
Chen
, “
Identifying key nodes in interdependent networks based on Supra-Laplacian energy
,”
J. Comput. Sci.
61
,
101657
(
2022
).
20.
S.
Brin
and
L.
Page
, “
The anatomy of a large-scale hypertextual web search engine
,”
Comput. Netw. ISDN Syst.
30
,
107
117
(
1998
).
21.
S.
Peng
,
Y.
Zhou
,
L.
Cao
,
S.
Yu
,
J.
Niu
, and
W.
Jia
, “
Influence analysis in social networks: A survey
,”
J. Netw. Comput. Appl.
106
,
17
32
(
2018
).
22.
E.
Newby
,
J. G. T.
Zaudo
, and
R.
Albert
, “
Structure-based approach to identifying small sets of driver nodes in biological networks
,”
Chaos
32
,
063102
(
2022
).
23.
H.
Liu
,
L.
He
,
F.
Zhang
,
Z.
Wang
, and
C.
Gao
, “
Dynamic community detection over evolving networks based on the optimized deep graph infomax
,”
Chaos
32
,
053119
(
2022
).
24.
M.
Kitsak
,
L. K.
Gallos
,
S.
Havlin
,
F.
Liljeros
,
L.
Muchnik
,
H. E.
Stanley
, and
H. A.
Makse
, “
Identification of influential spreaders in complex networks
,”
Nat. Phys.
6
,
888
(
2010
).
25.
R.
Albert
,
I.
Albert
, and
G. L.
Nakarado
, “
Structural vulnerability of the North American power grid
,”
Phys. Rev. E
69
,
025103
(
2004
).
26.
G.
Yan
,
T.
Zhou
,
B.
Hu
,
Z. Q.
Fu
, and
B. H.
Wang
, “
Efficient routing on complex networks
,”
Phys. Rev. E
73
,
046108
(
2006
).
27.
D.
Wang
,
W.
Yu
, and
X.
Zou
, “
Tensor-based mathematical framework and new centralities for temporal multilayer network
,”
Inf. Sci.
512
,
563
580
(
2020
).
28.
L.
Lv
,
K.
Zhang
,
D.
Bardou
,
T.
Zhang
,
J.
Zhang
,
Y.
Cai
, and
T.
Jiang
, “
A new centrality measure based on random walks for multilayer networks under the framework of tensor computation
,”
Physica A
526
,
121000
(
2019
).
29.
C.
Ni
and
J.
Yang
, “
Two-step seeding strategy in multiplex networks with inter-layer conversion cost of influence
,”
Chaos
32
,
083135
(
2022
).
30.
Y.
Hao
,
L.
Jia
, and
Y.
Wang
, “
Edge attack strategies in interdependent scale-free networks
,”
Physica A
540
,
122759
(
2020
).
31.
C.
Wang
,
Y.
Feng
,
C.
Zeng
, and
H.
Liu
, “Optimal disintegration strategy in multiplex networks: From an edge-based attack perspective,” in Proceedings of the 40th Chinese Control Conference (CCC) (IEEE, 2021), pp. 788–794.
32.
W.
Hong
,
C.
Qian
, and
K.
Tang
, “
Efficient minimum cost seed selection with theoretical guarantees for competitive influence maximization
,”
IEEE Trans. Cybern.
51
(
12
),
6091
6104
(
2021
).
33.
L.
Zhang
,
C.
Guo
, and
M.
Feng
, “
Effect of local and global information on the dynamical interplay between awareness and epidemic transmission in multiplex networks
,”
Chaos
32
,
083138
(
2022
).
34.
T. W.
Valente
, “
Social network thresholds in the diffusion of innovations
,”
Soc. Netw.
18
(
1
),
69
89
(
1996
).
35.
H.
Huang
,
Z.
Meng
, and
H.
Shen
, “
Competitive and complementary influence maximization in social network: A follower’s perspective
,”
Knowl.-Based Syst.
213
,
106600
(
2021
).
36.
T.
Cai
,
J.
Li
,
A.
Mian
,
R.-H.
Li
,
T.
Sellis
, and
J. X.
Yu
, “
Target-aware holistic influence maximization in spatial social networks
,”
IEEE Trans. Knowl. Data Eng.
34
(
4
),
1993
2007
(
2022
).
37.
S.
Wang
,
J.
Liu
, and
Y.
Jin
, “
Finding influential nodes in multipex networks using a memetic algoruthm
,”
IEEE Trans. Cybern.
51
(
2
),
900
912
(
2021
).
38.
J.
Guo
,
T.
Chen
, and
W.
Wu
, “
A multi-feature diffusion model: Rumor blocking in social networks
,”
IEEE/ACM Trans. Netw.
29
(
1
),
386
397
(
2021
).
39.
H.
Fang
,
X.
Wang
, and
L.
Hanzo
, “Autonomous collaborative authentication with privacy preservation in 6G: From homogeneity to heterogeneity,”
IEEE Netw.
(published online, 2022).
40.
L.
Li
,
A.
Zeng
,
Y.
Fan
, and
Z.
Di
, “
Modeling multi-opinion propagation in complex systems with heterogeneous relationships via Potts model on signed networks
,”
Chaos
32
,
083101
(
2022
).
41.
P.
Wang
,
L. T.
Yang
,
G.
Qian
,
J.
Li
, and
Z.
Yan
, “
HO-OTSVD: A novel tensor decomposition and its incremental decomposition for cyber–physical–social networks (CPSN)
,”
IEEE Trans. Netw. Sci. Eng.
7
(
2
),
713
725
(
2020
).
42.
X.
Gong
,
W.
Chen
,
J.
Chen
, and
B.
Ai
, “
Tensor denoising using low-rank tensor train decomposition
,”
IEEE Signal Process. Lett.
27
,
1685
1689
(
2020
).
43.
H.
Liu
,
L. T.
Yang
,
Y.
Guo
,
X.
Xie
, and
J.
Ma
, “
An incremental tensor-train decomposition for cyber-physical-social big data
,”
IEEE Trans. Big Data
7
(
2
),
341
354
(
2021
).
44.
L. D.
Lathauwer
,
B. D.
Moor
, and
J.
Vandewalle
, “
A multilinear singular value decomposition
,”
SIAM J. Matrix Anal. Appl.
21
,
1253
1278
(
2000
).
45.
A.
Einstein
, “
The foundation of the general theory of relativity
,”
Ann. Phys.
49
(
7
),
769
822
(
1916
).
46.
K. C.
Chang
,
L.
Qi
, and
G.
Zhou
, “
Singular values of a real rectangular tensor
,”
J. Math. Anal. Appl.
370
,
284
294
(
2010
).
47.
J.
Padgett
and
C.
Ansell
, “
Robust action and the rise of the Medici
,”
Am. J. Sociol.
98
(
6
),
1259
1319
(
1993
).
48.
N. A.
Christakis
and
J. H.
Fowler
,
Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives
(
Little Brown
,
New York
,
2009
).
49.
M. D.
Domenico
,
V.
Nicosia
,
A.
Arenas
, and
V.
Latora
, “
Structural reducibility of multilayer networks
,”
Nat. Commun.
6
,
6864
(
2015
).
50.
J.
Coleman
,
E.
Katz
, and
H.
Menzel
, “
The diffusion of an innovation among physicians
,”
Sociometry
20
,
253
270
(
1957
).
51.
T. A. B.
Snijders
,
P. E.
Pattison
,
G. L.
Robins
, and
M. S.
Handcock
, “
New specifications for exponential random graph models
,”
Sociol. Methodol.
36
,
99
153
(
2006
).
52.
F.
Battiston
,
V.
Nicosia
, and
V.
Latora
, “
Structural measures for multiplex networks
,”
Phys. Rev. E
89
,
032804
(
2014
).
You do not currently have access to this content.