In this paper, the complete bifurcation dynamics of period-3 motions to chaos are obtained semi-analytically through the implicit mapping method. Such an implicit mapping method employs discrete implicit maps to construct mapping structures of periodic motions to determine complex periodic motions. Analytical bifurcation trees of period-3 motions to chaos are determined through nonlinear algebraic equations generated through the discrete implicit maps, and the corresponding stability and bifurcations of periodic motions are achieved through eigenvalue analysis. To study the periodic motion complexity, harmonic amplitudes varying with excitation amplitudes are presented. Once more, significant harmonic terms are involved in periodic motions, and such periodic motions will be more complex. To illustrate periodic motion complexity, numerical and analytical solutions of periodic motions are presented for comparison, and the corresponding harmonic amplitudes and phases are also presented for such periodic motions in the bifurcation trees of period-3 motions to chaos. Similarly, other higher-order periodic motions and bifurcation dynamics for the nonlinear spring pendulum can be determined. The methods and analysis presented herein can be applied for other nonlinear dynamical systems.

1.
A. A.
Popov
, “
The application of spring pendulum analogies to the understanding of nonlinear shell vibration
,” in
Computational Fluid and Solid Mechanics
(
Elsevier
,
2003
), pp.
590
594
.
2.
N. D.
Anh
,
H.
Matsuhisa
,
L. D.
Viet
, and
M.
Yasuda
, “
Vibration control of an inverted pendulum type structure by passive mass-spring-pendulum dynamic vibration absorber
,”
J. Sound Vib.
307
,
187
201
(
2007
).
3.
Y.
Wu
,
J.
Qiu
,
S.
Zhou
,
H.
Ji
,
Y.
Chen
, and
S.
Li
, “
A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting
,”
Appl. Energy
231
,
600
614
(
2018
).
4.
S. E.
Masters
and
J. H.
Challis
, “
Increasing the stability of the spring loaded inverted pendulum model of running with a wobbling mass
,”
J. Biomech.
123
,
110527
(
2021
).
5.
A.
Witt
and
G.
Gorelik
, “
Kolebanya uprugogo mayatnika, kak primer kolebanii dvuh parametricheski svyazannykh lineinikh sistem
,”
Z. Tekh. Fiz.
3
,
294
306
(
1933
).
6.
M. G.
Olsson
, “
Why does amass on a spring sometimes misbehave?
,”
Am. J. Phys.
44
(
12
),
1211
1212
(
1976
).
7.
L.
Falk
, “
Recurrence effects in the parametric spring pendulum
,”
Am. J. Phys.
46
(
11
),
1120
1123
(
1978
).
8.
H. M.
Lai
, “
On the recurrence phenomenon of a resonant spring pendulum
,”
Am. J. Phys.
52
(
3
),
219
223
(
1984
).
9.
H. N.
Nunez-Yepez
,
A. L.
Salas-Brito
,
C. A.
Vargas
, and
L.
Vicente
, “
Onset of chaos in an extensible pendulum
,”
Phys. Lett. A
145
,
101
105
(
1990
).
10.
R.
Cuerno
,
A. F.
Ranada
, and
J. J.
Ruiz-Lorenzo
, “
Deterministic chaos in the elastic pendulum: A simple laboratory for non-linear dynamics
,”
Am. J. Phys.
60
(
1
),
73
79
(
1992
).
11.
W. K.
Lee
and
C. S.
Hsu
, “
A global analysis of a harmonically excited spring-pendulum system with internal resonance
,”
J. Sound Vib.
171
,
335
359
(
1994
).
12.
J. P.
van der Weele
and
E.
de Kleine
, “
The order-chaos-order sequence in the spring-pendulum
,”
Physica A
228
,
245
272
(
1996
).
13.
W. K.
Lee
and
H. D.
Park
, “
Second-order approximation for chaotic responses of a harmonically excited spring-pendulum system
,”
Int. J. Nonlinear Mech.
34
,
749
757
(
1999
).
14.
M.
Eissa
,
S. A.
EL-Serafi
,
M.
EL-Sheikh
, and
M.
Sayed
, “
Stability and primary simultaneous resonance of harmonically excited non-linear spring pendulum system
,”
Appl. Math. Comput.
145
,
421
442
(
2003
).
15.
A.
Alasty
and
R.
Shabani
, “
Chaotic motions and fractal basin boundaries in spring pendulum system
,”
Nonlinear Anal. Real World Appl.
7
,
81
95
(
2006
).
16.
M.
Eissa
and
M.
Sayed
, “
Vibration reduction of a three DOF non-linear spring pendulum
,”
Commun. Nonlinear Sci. Numer. Simul.
13
,
465
488
(
2008
).
17.
T. S.
Amer
and
M. A.
Bek
, “
Chaotic responses of a harmonically excited spring pendulum moving in circular path
,”
Nonlinear Anal. Real World Appl.
10
,
3196
3202
(
2009
).
18.
M. C.
de Sousa
,
F. A.
Marcus
,
I. L.
Caldas
, and
R. L.
Viana
, “
Energy distribution in intrinsically coupled systems: The spring pendulum paradigm
,”
Physica A
509
,
1110
1119
(
2018
).
19.
A. C. J.
Luo
,
Continuous Dynamical Systems
(
HEP/L&H Scientific
,
Beijing
,
2012
).
20.
A. C. J.
Luo
and
J. Z.
Huang
, “
Analytical dynamics of period-m flows and chaos in nonlinear systems
,”
Int. J. Bifurc. Chaos
22
,
1250093
(
2012
).
21.
A. C. J.
Luo
and
J.
Huang
, “
Analytical routines of period-1 motions to chaos in a periodically forced Duffing oscillator with twin-well potential
,”
J. Appl. Nonlinear Dyn.
1
,
73
108
(
2012
).
22.
A. C. J.
Luo
, “
Periodic flows to chaos based on discrete implicit mappings of continuous nonlinear systems
,”
Int. J. Bifurc. Chaos
25
(
3
),
1550044
(
2015
).
23.
A. C. J.
Luo
and
Y.
Guo
, “
A semi-analytical prediction of periodic motions in duffing oscillator through mapping structures
,”
Interdiscipl. J. Discontinuity Nonlinearity Complexity
4
(
2
),
121
150
(
2015
).
24.
Y.
Guo
and
A. C. J.
Luo
, “
On complex periodic motions and bifurcations in a periodically forced, damped, hardening duffing oscillator
,”
Chaos Solitons Fractals
81
,
378
399
(
2015
).
25.
A. C. J.
Luo
and
Y.
Guo
, “
Periodic motions to chaos in pendulum
,”
Int. J. Bifurc. Chaos
26
(
9
),
1650159
(
2016
).
26.
Y.
Guo
and
A. C. J.
Luo
, “
Routes of periodic motions to chaos in a periodically forced pendulum
,”
Int. J. Dyn.Control
5
(
3
),
551
569
(
2017
).
27.
Y.
Guo
and
A. C. J.
Luo
, “
Complete bifurcation trees of a parametrically driven pendulum
,”
J. Vib. Testing Syst. Dyn.
1
(
2
),
93
134
(
2017
).
28.
A. C. J.
Luo
and
Y.
Yuan
, “
Bifurcation trees of period-1 to period-2 motions in a periodically excited nonlinear spring pendulum
,”
J. Vib. Testing Syst. Dyn.
4
(
3
),
201
248
(
2020
).
29.
Y.
Guo
, “
Bifurcations and harmonic responses of period-1 motions in a periodically excited spring pendulum
,”
J. Vib. Testing Syst. Dyn.
6
(
3
),
291
315
(
2022
).
You do not currently have access to this content.