The classical Melnikov method for heteroclinic orbits is extended theoretically to a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation. We assume that the unperturbed system is a piecewise Hamiltonian system with a pair of heteroclinic orbits. The heteroclinic orbit transversally jumps across the first switching manifold by an impulsive effect and crosses the second switching manifold continuously. In effect, the trajectory of the corresponding perturbed system crosses the second switching manifold by applying the reset map describing the impact rule instantaneously. The random Melnikov process of such systems is then derived by measuring the distance of perturbed stable and unstable manifolds, and the criteria for the onset of chaos with or without noise excitation is established. In this derivation process, we overcome the difficulty that the derivation method of the corresponding homoclinic case cannot be directly used due to the difference between the symmetry of the homoclinic orbit and the asymmetry of the heteroclinic orbit. Finally, we investigate the complicated dynamics of a particular piecewise-smooth system with and without noise excitation under the reset maps, impulsive effect, and non-autonomous periodic and damping perturbations by this new extended method and numerical simulations. The numerical results verify the correctness of the theoretical results and demonstrate that this extended method is simple and effective for studying the dynamics of such systems.

1.
Y. X.
Li
,
Z. C.
Wei
,
W.
Zhang
, and
M.
Yi
, “
Melnikov-type method for a class of hybrid piecewise-smooth systems with impulsive effect and noise excitation: Homoclinic orbits
,”
Chaos
32
,
073119
(
2022
).
2.
B.
Brogliato
,
Nonsmooth Mechanics
(
Springer
,
London
,
1999
).
3.
M.
Wiercigroch
and
E.
Pavlovskaia
,
Engineering Applications of Non-Smooth Dynamics
(
Springer
,
Dordrecht
,
2012
).
4.
M. C.
Mackey
and
L.
Glass
, “
Oscillation and chaos in physiological control systems
,”
Science
197
,
287
289
(
1977
).
5.
Y.
Nesterov
, “
Excessive gap technique in nonsmooth convex minimization
,”
SIAM J. Optim.
16
,
235
249
(
2005
).
6.
T.
Kobori
,
M.
Takahashi
,
T.
Nasu
,
N.
Niwa
, and
K.
Ogasawara
, “
Seismic response controlled structure with active variable stiffness system
,”
Earthq. Eng. Struct. Dyn.
22
,
925
941
(
1993
).
7.
N.
Blackbeard
,
H.
Erzgräber
, and
S.
Wieczorek
, “
Shear-induced bifurcations and chaos in models of three coupled lasers
,”
SIAM J. Appl. Dyn. Syst.
10
,
469
509
(
2011
).
8.
F. R.
Wang
,
H. Z.
Liu
,
Z. C.
Wei
, and
I.
Moroz
, “
Generalized Hopf bifurcation analysis of a towed caster wheel system
,”
Int. J. Non-Linear Mech.
137
,
103789
(
2021
).
9.
Z.
Faghani
,
F.
Nazarimehr
,
S.
Jafari
, and
J. C.
Sprott
, “
Simple chaotic systems with specific analytical solutions
,”
Int. J. Bifurc. Chaos
29
,
1950116
(
2019
).
10.
Z. C.
Wei
,
Y. Y.
Li
,
B.
Sang
,
Y.
Liu
, and
W.
Zhang
, “
Complex dynamical behaviors in a 3D simple chaotic flow with 3D stable or 3D unstable manifolds of a single equilibrium
,”
Int. J. Bifurc. Chaos
29
,
1950095
(
2019
).
11.
Z.
Faghani
,
F.
Nazarimehr
,
S.
Jafari
, and
J. C.
Sprott
, “
A new category of three-dimensional chaotic flows with identical eigenvalues
,”
Int. J. Bifurc. Chaos
30
,
2050026
(
2020
).
12.
Z. C.
Wei
,
B.
Zhu
,
J.
Yang
,
M.
Perc
, and
M.
Slavinec
, “
Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays
,”
Appl. Math. Comput.
347
,
265
281
(
2019
).
13.
V. K.
Melnikov
, “
On the stability of the center for time periodic perturbations
,”
Trans. Moscow Math. Soc.
12
,
1
57
(
1963
). http://mi.mathnet.ru/eng/mmo/v12/p3.
14.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
(
Sprigner
,
New York
,
1997
).
15.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
(
Sprigner
,
New York
,
2000
).
16.
L.
Shi
,
Y.
Zou
, and
T.
Kpper
, “
Melnikov method and detection of chaos for non-smooth systems
,”
Acta Math. Appl. Sin. Engl. Ser.
29
,
881
896
(
2013
).
17.
M.
Kunze
,
Non-Smooth Dynamical Systems
(
Springer
,
Berlin
,
2000
).
18.
J.
Castro
and
J.
Alvarez
, “
Melnikov-type chaos of planar systems with two discontinuities
,”
Int. J. Bifurc. Chaos
25
,
1550027
(
2015
).
19.
Z. D.
Du
and
W. N.
Zhang
, “
Melnikov method for homoclinic bifurcations in nonlinear impact oscillators
,”
Comput. Math. Appl.
50
,
445
458
(
2005
).
20.
F.
Battelli
and
M.
Fečkan
, “
Homoclinic trajectories in discontinuous systems
,”
J. Dyn. Differ. Equat.
20
,
337
376
(
2008
).
21.
F.
Battelli
and
M.
Fečkan
, “
On the chaotic behaviour of discontinuous systems
,”
J. Dyn. Differ. Equat.
23
,
495
540
(
2011
).
22.
F.
Battelli
and
M.
Fečkan
, “
Bifurcation and chaos near sliding homoclinics
,”
J. Differ. Equat.
248
,
2227
2262
(
2010
).
23.
F.
Battelli
and
M.
Fečkan
, “
Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
,”
Physica D
241
,
1962
1975
(
2012
).
24.
S. B.
Li
,
W.
Zhang
, and
Y. X.
Hao
, “
Melnikov-type method for a class of discontinuous planar systems and applications
,”
Int. J. Bifurc. Chaos
24
,
1450022
(
2014
).
25.
A.
Granados
,
S. J.
Hogan
, and
T. M.
Seara
, “
The Melnikov method and subharmonic orbits in a piecewise-smooth system
,”
SIAM J. Appl. Dyn. Syst.
11
,
801
830
(
2012
).
26.
S. B.
Li
,
W. S.
Ma
,
W.
Zhang
, and
Y. X.
Hao
, “
Melnikov method for a class of planar hybrid piecewise-smooth systems
,”
Int. J. Bifurc. Chaos
26
,
1650030
(
2016
).
27.
S. B.
Li
,
C.
Shen
,
W.
Zhang
, and
Y. X.
Hao
, “
The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application
,”
Nonlinear Dyn.
85
,
1091
1104
(
2016
).
28.
S. B.
Li
,
H. L.
Wu
,
X. X.
Zhou
,
T. T.
Wang
, and
W.
Zhang
, “
Theoretical and experimental studies of global dynamics for a class of bistable nonlinear impact oscillators with bilateral rigid constraints
,”
Int. J. Non-Linear Mech.
133
,
103720
(
2021
).
29.
S. B.
Li
,
H. L.
Wu
, and
J. N.
Chen
, “
Global dynamics and performance of vibration reduction for a new vibro-impact bistable nonlinear energy sink
,”
Int. J. Non-Linear Mech.
139
,
103891
(
2021
).
30.
R. L.
Tian
,
Y. F.
Zhou
,
B. L.
Zhang
, and
X. W.
Yang
, “
Chaotic threshold for a class of impulsive differential system
,”
Nonlinear Dyn.
83
,
2229
2240
(
2016
).
31.
R. L.
Tian
,
Y. F.
Zhou
,
Y. Z.
Wang
,
W. J.
Feng
, and
X. W.
Yang
, “
Chaotic threshold for non-smooth system with multiple impulse effect
,”
Nonlinear Dyn.
85
,
1849
1863
(
2016
).
32.
R. L.
Tian
,
T.
Wang
,
Y. F.
Zhou
,
J.
Li
, and
S. T.
Zhu
, “
Heteroclinic chaotic threshold in a nonsmooth system with jump discontinuities
,”
Int. J. Bifurc. Chaos
30
,
2050141
(
2020
).
33.
S. B.
Li
,
T. T.
Wang
, and
X. L.
Bian
, “
Global dynamics for a class of new bistable nonlinear oscillators with bilateral elastic collisions
,”
Int. J. Dyn. Control
9
,
885
900
(
2021
).
34.
H.
Zheng
and
Y. H.
Xia
, “
Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function
,”
Discret. Contin. Dyn. Syst. Ser. B
27
,
6353
(
2022
).
35.
A. R.
Bulsara
,
W. C.
Schieve
, and
E. W.
Jacobs
, “
Homoclinic chaos in systems perturbed by weak Langevin noise
,”
Phys. Rev. A
41
,
668
681
(
1990
).
36.
M.
Frey
and
E.
Simiu
, “
Noise-induced chaos and phase space flux
,”
Physica D
63
,
321
340
(
1993
).
37.
H.
Lin
and
S. C. S.
Yim
, “
Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors
,”
J. Appl. Mech.
63
,
509
516
(
1996
).
38.
Y. M.
Lei
,
F.
Zhang
, and
X. Z.
Shao
, “
Chaos and chaos control of the Frenkel–Kontorova model with dichotomous noise
,”
Int. J. Bifurc. Chaos
27
,
1750052
(
2017
).
39.
E. L.
Chen
,
W. C.
Xing
,
M. Q.
Wang
,
W. L.
Ma
, and
Y. J.
Chang
, “
Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation
,”
Chaos Solit. Fract.
152
,
111300
(
2021
).
40.
D.
Liu
,
Y.
Xu
, and
J.
Li
, “
Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energy harvester system with fractional-order physical properties
,”
J. Sound Vibr.
339
,
182
196
(
2017
).
41.
D.
Liu
and
Y.
Xu
, “
Random disordered periodical input induced chaos in discontinuous systems
,”
Int. J. Bifurc. Chaos
29
,
1950002
(
2019
).
42.
E.
Simiu
, “
A unified theory of deterministic and noise-induced transitions: Melnikov processes and their application in engineering, physics and neuroscience
,”
AIP Conf. Proc.
502
,
266
271
(
2000
).
43.
X. L.
Yang
,
Y.
Xu
, and
Z. K.
Sun
, “
Effect of Gaussian white noise on the dynamical behaviors of an extended Duffing-van der Pol oscillator
,”
Int. J. Bifurc. Chaos
16
,
2587
2600
(
2006
).
44.
G. A.
Gottwald
and
I.
Melbourne
, “
A new test for chaos in deterministic systems
,”
Proc. R. Soc. Lond. Ser. A
460
,
603
611
(
2004
).
45.
K. H.
Sun
,
X.
Liu
, and
C. X.
Zhu
, “
The 0–1 test algorithm for chaos and its applications
,”
Chin. Phys. B
19
,
110510
(
2010
).
46.
L. G.
Yuan
,
Q. G.
Yang
, and
C. B.
Zeng
, “
Chaos detection and parameter identification in fractional-order chaotic systems with delay
,”
Nonlinear Dyn.
73
,
439
448
(
2013
).
47.
Y. M.
Lei
and
F.
Zheng
, “
Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions
,”
Chaos
26
,
123111
(
2016
).
You do not currently have access to this content.