Previously, we observed that the student workload follows an inverse relation with the learning rate (an application of the kinematic notion of speed contextualized to the learning process). Motivated by this finding, we propose a quantitative estimation of the learning rate using a different source of information: the historical records of final grades of a given course. According to empirical data analyzed in other similar studies, the distribution functions of final grades exhibit a regular pattern: a Gaussian behavior for the approval region and a homogeneous distribution for the failed one. This fact is combined with the incidence of student elimination–desertion rules for introducing two simple agent-based models. Our analysis is complemented by revisiting the performance indicators typically employed to characterize the student promotion and progression. We discuss some other performance indicators to characterize the learning advancement of students: the group learning rate and the learning curve. We compare the results of Monte Carlo simulations with empirical data, observing a good agreement in the behavior of performance indicators derived from these sources. This analysis suggests an adaptive method for the readjustment of the student workload (the number of academic credits) considering the group learning rates during a follow-up period, which resembles the readjustment of prices of goods (and services) in correspondence with the evolution of supply and demand.

1.
E. Commission, S. Directorate-General for Education, Youth, and Culture, ECTS Users’ Guide 2015 (Publications Office, 2017).
2.
F.
Kri Amar
et al.,
Manual Para la Implementación del Sistema de Créditos Académicos Transferibles SCT-Chile
(
Consejo de Rectores de las Universidades Chilenas, CRUCH
,
2013
).
3.
D.
Gerhard
, “
The emergence of the credit system in American education considered as a problem of social and intellectual history
,”
Bull. Am. Assoc. Univ. Prof. (1915-1955)
41
,
647
668
(
1955
).
4.
P. G.
Altbach
, “
Measuring academic progress: The course-credit system in American higher education
,”
High. Educ. Policy
14
,
37
44
(
2001
).
5.
S.
Hoidn
,
Student-Centered Learning Environments in Higher Education Classrooms
, 1st ed. (
Palgrave Macmillan
,
New York
,
2017
).
6.
M. C.
van der Wende
, “
The Bologna Declaration: Enhancing the transparency and competitiveness of European higher education
,”
J. Stud. Int. Educ.
4
,
3
10
(
2000
).
7.
J.
Gonzalez
and
R. E.
Wagenaar
,
Tuning Educational Structures in Europe II: Universities’ Contribution to the Bologna Process
(
Universidad de Deusto
,
Bilbao
,
2005
).
8.
E.
Chambers
, “
Work-load and the quality of student learning
,”
Stud. High. Educ.
17
,
141
153
(
1992
).
9.
D.
Kember
, “
Interpreting student workload and the factors which shape students’ perceptions of their workload
,”
Stud. High. Educ.
29
,
165
184
(
2004
).
10.
A.
Tversky
and
D.
Kahneman
, “
Judgment under uncertainty: Heuristics and biases
,”
Science
185
,
1124
1131
(
1974
).
11.
J.
Jewett
and
R.
Serway
,
Physics for Scientists and Engineers with Modern Physics
(
Thomson Brooks/Cole
,
2008
).
12.
N.
Mankiw
,
Principles of Economy
, 5th ed. (
South-Western Cengage Learning
,
2011
).
13.
D. R. E.
Brent
,
Quality in Higher Education
, 1st ed. (
Routledge
,
2018
).
14.
G.
Casella
and
R.
Berger
,
Statistical Inference
(
Duxbury Resource Center
,
2001
).
15.
L.
Velazquez
,
B.
Atenas
, and
J. C.
Castro-Palacio
, “
Quantitative methods to determine the student workload: I. Empirical study based on digital platforms
,”
Chaos
(to be published) (
2022
).
16.
L.
Velazquez
, “Programa de licenciatura en física c/m astronomía: Reporte estadístico 2015–2019,” Universidad Católica del Norte, 2020.
17.
L.
Velazquez
, “Quantitative methods for supporting the implementation of Chilean SCT-system using institutional databases of the teaching-learning processes,” Universidad Católica del Norte (unpublished) (2022).
18.
F.
Dekking
,
C.
Kraaikamp
,
H.
Lopuhaä
, and
L.
Meester
, A Modern Introduction to Probability and Statistics: Understanding Why and How, Springer Texts in Statistics (Springer, 2005).
19.
L. L.
Cam
, “
The central limit theorem around 1935
,”
Stat. Sci.
1
,
78
91
(
1986
).
20.
D. G.
Pregrado
,
Reglamento Docencia de Pregrado
(
Universidad Católica del Norte
,
Antofagasta, Chile
,
2015
).
21.
D.
Parmenter
,
Key Performance Indicators: Developing, Implementing, and Using Winning KPIs
, 3th ed. (
John Wiley & Sons
,
2015
).
22.
H.
Ebbinghaus
, “
Memory: A contribution to experimental psychology
,”
Ann. Neurosci.
20
,
155
156
(
1913
).
23.
E. R.
Berndt
,
The Practice of Econometrics: Classical and Contemporary
(
Addison-Wesley Publishing Company
,
1991
).
24.
C.
Gini
, “
Concentration and dependency ratios
,”
Riv. Polit. Econ.
87
,
769
792
(
1907
).
25.
A.
Engel
and
C.
Van den Broeck
,
Statistical Mechanics of Learning
(
Cambridge University Press
,
2001
).
26.
J.
Honerkamp
, Statistical Physics: An Advanced Approach with Applications Web-Enhanced with Problems and Solutions, Advanced Texts in Physics (Springer, Berlin, 2013).
27.
R.
Myerson
,
Game Theory: Analysis of Conflict
(
Harvard University Press
,
1997
).
28.
C. M.
Bordogna
and
E. V.
Albano
, “
Theoretical description of teaching-learning processes: A multidisciplinary approach
,”
Phys. Rev. Lett.
87
,
118701
(
2001
).
29.
C. M.
Bordogna
and
E. V.
Albano
, “
Simulation of social processes: Application to social learning
,”
Physica A
329
,
281
286
(
2003
).
30.
I. T.
Koponen
,
T.
Kokkonen
, and
M.
Nousiainen
, “
Modelling sociocognitive aspects of students’ learning
,”
Physica A
470
,
68
81
(
2017
).
31.
I.
Ormazábal
,
F. A.
Borotto
, and
H. F.
Astudillo
, “
An agent-based model for teaching-learning processes
,”
Physica A
565
,
125563
(
2021
).
32.
P.
Collard
, “
The “flat peer learning” agent-based model
,”
J. Comput. Soc. Sci.
5
,
161
187
(
2022
).
33.
C.
Powell
and
K.
Arriola
, “
Relationship between psychosocial factors and academic achievement among African American students
,”
J. Educ. Res.
96
,
175
181
(
2003
).
34.
M. R.
De Besa Gutierrez
,
J.
Gil Flores
, and
A. J.
Garcia Gonzalez
, “
Psychosocial variables and academic performance related to optimism in Spanish first-year university students
,”
Acta Colomb. Psicol.
22
,
152
163
(
2019
).
You do not currently have access to this content.