We consider globally connected coupled Winfree oscillators under the influence of an external periodic forcing. Such systems exhibit many qualitatively different regimes of collective dynamics. Our aim is to understand this collective dynamics and, in particular, the system’s capability of entrainment to the external forcing. To quantify the entrainment of the system, we introduce the entrainment degree, that is, the proportion of oscillators that synchronize to the forcing, as the main focus of this paper. Through a series of numerical simulations, we study the entrainment degree for different inter-oscillator coupling strengths, external forcing strengths, and distributions of natural frequencies of the Winfree oscillators, and we compare the results for the different cases. In the case of identical oscillators, we give a precise description of the parameter regions where oscillators are entrained. Finally, we use a mean-field method, based on the Ott–Antonsen ansatz, to obtain a low-dimensional description of the collective dynamics and to compute an approximation of the entrainment degree. The mean-field results turn out to be strikingly similar to the results obtained through numerical simulations of the full system dynamics.

2.
J. T.
Ariaratnam
and
S. H.
Strogatz
,
Phys. Rev. Lett.
86
,
4278
(
2001
).
3.
A. T.
Winfree
, The Geometry of Biological Time, 2nd ed., Interdisciplinary Applied Mathematics Vol. 12 (Springer, 2001).
4.
R. L.
Devaney
, An Introduction to Chaotic Dynamical Systems, 2nd ed., Studies in Nonlinearity No. 1 (Addison-Wesley Publishing Company, Inc., 1989).
5.
Y.
Kuramoto
, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Araki (Springer, 1975), pp. 420–422.
6.
D. D.
Quinn
,
R. H.
Rand
, and
S. H.
Strogatz
, in 5th EUROMECH Nonlinear Oscillations Conference (2005).
7.
D. D.
Quinn
,
R. H.
Rand
, and
S. H.
Strogatz
,
Phys. Rev. E
75
,
036218
(
2007
).
8.
W.
Oukil
,
A.
Kessi
, and
P.
Thieullen
,
Dyn. Syst.
32
,
326
(
2017
).
9.
S.-Y.
Ha
,
J.
Park
, and
S. W.
Ryoo
,
Discrete Contin. Dyn. Syst., Ser. A
35
,
3417
(
2015
).
10.
S.-Y.
Ha
,
D.
Ko
,
J.
Park
, and
S. W.
Ryoo
,
J. Differ. Equ.
260
,
4203
(
2016
).
11.
D.
Pazó
and
E.
Montbrió
,
Phys. Rev. X
4
,
011009
(
2014
).
12.
R.
Gallego
,
E.
Montbrió
, and
D.
Pazó
,
Phys. Rev. E
96
,
042208
(
2017
).
13.
C. R.
Laing
, “Phase oscillator network models of brain dynamics,” in Computational Models of Brain and Behavior (Wiley-Blackwell, 2017), Chap. 37, pp. 505–517.
14.
R.
Cestnik
and
A.
Pikovsky
,
Phys. Rev. Lett.
128
,
054101
(
2022
).
15.
T. S.
Parker
and
L. O.
Chua
,
Practical Numerical Algorithms for Chaotic Systems
(
Springer-Verlag
,
1989
).
16.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
17.
E.
Ott
and
T. M.
Antonsen
,
Chaos
19
,
023117
(
2009
).
18.
J. R.
Engelbrecht
and
R.
Mirollo
,
Phys. Rev. Res.
2
,
023057
(
2020
).
19.
Y. A.
Kuznetsov
, Elements of Applied Bifurcation Theory, 2nd ed., Applied Mathematical Sciences Vol. 112 (Springer, 1998).
20.
A.
Dhooge
,
W.
Govaerts
,
Y. A.
Kuznetsov
,
H. G. E.
Meijer
, and
B.
Sautois
,
Math. Comput. Modell. Dyn. Syst.
14
,
147
(
2008
).
21.
T. M.
Antonsen
,
R. T.
Faghih
,
M.
Girvan
,
E.
Ott
, and
J.
Platig
,
Chaos
18
,
037112
(
2008
).
22.
L. M.
Childs
and
S. H.
Strogatz
,
Chaos
18
,
043128
(
2008
).
23.
J. S.
Climaco
and
A.
Saa
,
Chaos
29
,
073115
(
2019
).
24.
C. A.
Moreira
and
M. A.
de Aguiar
,
Phys. A
514
,
487
(
2019
).
25.
D.
Yuan
,
J.-L.
Tian
,
F.
Lin
,
D.-W.
Ma
,
J.
Zhang
,
H.-T.
Cui
, and
Y.
Xiao
,
Front. Phys.
13
,
130504
(
2018
).
26.
Y.
Baibolatov
,
M.
Rosenblum
,
Z. Z.
Zhanabaev
,
M.
Kyzgarina
, and
A.
Pikovsky
,
Phys. Rev. E
80
,
046211
(
2009
).
You do not currently have access to this content.