We study the synchronization of two coupled idealized economies. In the present work, we consider a recently developed economic system that shows a richness of dynamical behavior. By means of the Lyapunov exponents, we analyze that there is overly complex behavior in the transitions in the dynamics of an isolated economy, oscillating between chaotic attractors and limit cycles. Then, for two coupled economies, we analyze the synchronization states for the space of all control parameters as a function of the network coupling parameter. Interestingly, we have evidenced that there is a broad region of fully synchronized states and as we increase the coupling, some phenomena such as a smooth and intermittent loss in synchronization emerge. In the same way, we observe phase synchronization for one of the control parameters. Ultimately, in order to confirm this loss of synchronization, we inspect the stability of synchronized states through the master stability function method for some control parameters. Here, we corroborate what was previously observed, the unexpected vast range of control parameter values of instability corresponding to desynchronization.

1.
L.
Gardini
,
L.
Gori
,
L.
Guerrini
, and
M.
Sodini
, “Introduction to the focus issue ‘nonlinear economic dynamics,’”
Chaos
28
(5),
055801
(
2018
).
2.
A.
Groth
and
M.
Ghil
, “
Synchronization of world economic activity
,”
Chaos
27
,
127002
(
2017
).
3.
A. S.
Amaral
,
V. E.
Camargo
,
A. F.
Crepaldi
, and
F. F.
Ferreira
, “
Interaction between economies in a business cycle model
,”
Chaos Soliton. Fract.
155
,
111672
(
2022
).
4.
C.
Kyrtsou
and
C. E.
Vorlow
, “Complex dynamics in macroeconomics: A novel approach,” in New Trends in Macroeconomics (Springer, 2005), pp. 223–238.
5.
G.
Haberler
,
Prosperity and Depression: A Theoretical Analysis of Cyclical Movements
(
Routledge
,
2017
).
6.
R. E.
Lucas
, “Understanding business cycles,” in Essential Readings in Economics (Springer, 1995), pp. 306–327.
7.
C.
Calderon
and
J. R.
Fuentes
, “
Have business cycles changed over the last two decades? An empirical investigation
,”
J. Dev. Econ.
109
,
98
123
(
2014
).
8.
P.
Goodwin
, “
The control of branch growth on potato tubers: II. The pattern of sprout growth
,”
J. Exp. Bot.
18
,
87
99
(
1967
).
9.
C. K.
Volos
,
I. M.
Kyprianidis
, and
I. N.
Stouboulos
, “
Synchronization phenomena in coupled nonlinear systems applied in economic cycles
,”
WSEAS Trans. Syst.
11
,
681
690
(
2012
).
10.
S.
Bouali
, “
Feedback loop in extended Van der Pol’s equation applied to an economic model of cycles
,”
Int. J. Bifurcation Chaos
9
,
745
756
(
1999
).
11.
B.
Van der Pol
, “
LXXXVIII. On ‘relaxation-oscillations’
,”
London Edinb. Dublin Philos. Mag. J. Sci.
2
,
978
992
(
1926
).
12.
S.
Bouali
,
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
L.
Gambuzza
, “
Emulating complex business cycles by using an electronic analogue
,”
Nonlinear Anal.: Real World Appl.
13
,
2459
2465
(
2012
).
13.
J.
Hicks
, “
IS-LM: An explanation
,”
J. Post Keynesian Econ.
3
,
139
154
(
1980
).
14.
D. H.
Romer
, “
Keynesian macroeconomics without the lm curve
,”
J. Econ. Perspect.
14
,
149
169
(
2000
).
15.
D. M.
Dubois
, “
Extension of the Kaldor-Kalecki model of business cycle with a computational anticipated capital stock
,”
J. Organ. Transform. Social Change
1
,
63
80
(
2004
).
16.
M.
Szydłowski
,
A.
Krawiec
, and
J.
Toboła
, “
Nonlinear oscillations in business cycle model with time lags
,”
Chaos Soliton. Fract.
12
,
505
517
(
2001
).
17.
N. F.
Campos
,
J.
Fidrmuc
, and
I.
Korhonen
, “
Business cycle synchronisation and currency unions: A review of the econometric evidence using meta-analysis
,”
Int. Rev. Financ. Anal.
61
,
274
283
(
2019
).
18.
V.
Kufenko
and
N.
Geiger
, “
Business cycles in the economy and in economics: An econometric analysis
,”
Scientometrics
107
,
43
69
(
2016
).
19.
D.
He
and
W.
Liao
, “
Asian business cycle synchronization
,”
Pac. Econ. Rev.
17
,
106
135
(
2012
).
20.
M.
Hanias
,
L.
Magafas
, and
S.
Stavrinides
, “
‘Reverse engineering’ in econophysics
,”
Int. J. Prod. Manage. Assess. Technol.
7
,
36
49
(
2019
).
21.
M.
Vosvrda
et al., “Bifurcation routes and economic stability,” in 7th International Conference of the Society for Computational Economics (Yale University, 2001), pp. 28–30.
22.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
23.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical application
,”
Meccanica
15
,
21
30
(
1980
).
24.
I.
Shimada
and
T.
Nagashima
, “
A numerical approach to ergodic problem of dissipative dynamical systems
,”
Prog. Theor. Phys.
61
,
1605
1616
(
1979
).
25.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
26.
A.
Wolf
et al., “
Quantifying chaos with Lyapunov exponents
,”
Chaos
16
,
285
317
(
1986
).
27.
J. A.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
28.
T. M.
O’Brien
,
G. E.
Roberts
et al., “
Elusive zeros under Newton’s method
,”
Appl. Math.
5
,
2393
(
2014
).
29.
L. M.
Pecora
and
T. L.
Carroll
, “
Master stability functions for synchronized coupled systems
,”
Phys. Rev. Lett.
80
,
2109
(
1998
).
30.
L.
Sella
,
G.
Vivaldo
,
A.
Groth
, and
M.
Ghil
, “
Economic cycles and their synchronization: A comparison of cyclic modes in three European countries
,”
J. Bus. Cycle Res.
12
,
25
48
(
2016
).
31.
A.
Torres
and
O.
Vela
, “
Trade integration and synchronization between the business cycles of Mexico and the United States
,”
North Am. J. Econ. Financ.
14
,
319
342
(
2003
).
32.
P. B.
Rana
, “
Economic integration and synchronization of business cycles in East Asia
,”
J. Asian Econ.
18
,
711
725
(
2007
).
33.
A. N.
Berdiev
and
C.-P.
Chang
, “
Business cycle synchronization in Asia-Pacific: New evidence from wavelet analysis
,”
J. Asian Econ.
37
,
20
33
(
2015
).
34.
F.
Qi
,
Z.
Hou
, and
H.
Xin
, “
Ordering chaos by random shortcuts
,”
Phys. Rev. Lett.
91
,
064102
(
2003
).
You do not currently have access to this content.