We presented a methodology to approximate the entropy production for Brownian motion in a tilted periodic potential. The approximation stems from the well known thermodynamic uncertainty relation. By applying a virial-like expansion, we provided a tighter lower limit solely in terms of the drift velocity and diffusion. The approach presented is systematically analyzed in the tight-binding regime. We also provide a relative simple rule to validate using the tight-binding approach based on drift and diffusion relations rather than energy barriers and forces. We also discuss the implications of our results outside the tight-binding regime.

1.
A. C.
Barato
and
U.
Seifert
, “
Thermodynamic uncertainty relation for biomolecular processes
,”
Phys. Rev. Lett.
114
,
158101
(
2015
).
2.
A. C.
Barato
and
U.
Seifert
, “
Cost and precision of Brownian clocks
,”
Phys. Rev. X
6
,
041053
(
2016
).
3.
P.
Pietzonka
,
A. C.
Barato
, and
U.
Seifert
, “
Universal bound on the efficiency of molecular motors
,”
J. Stat. Mech.: Theory Exp.
2016
,
124004
.
4.
P.
Pietzonka
and
U.
Seifert
, “
Universal trade-off between power, efficiency, and constancy in steady-state heat engines
,”
Phys. Rev. Lett.
120
,
190602
(
2018
).
5.
T. R.
Gingrich
,
J. M.
Horowitz
,
N.
Perunov
, and
J. L.
England
, “
Dissipation bounds all steady-state current fluctuations
,”
Phys. Rev. Lett.
116
,
120601
(
2016
).
6.
A.
Rosas
,
C.
Van den Broeck
, and
K.
Lindenberg
, “
Stochastic thermodynamics for a periodically driven single-particle pump
,”
Phys. Rev. E
96
,
052135
(
2017
).
7.
W.
Hwang
and
C.
Hyeon
, “
Energetic costs, precision, and transport efficiency of molecular motors
,”
J. Phys. Chem. Lett.
9
,
513
520
(
2018
).
8.
K.
Brandner
,
T.
Hanazato
, and
K.
Saito
, “
Thermodynamic bounds on precision in ballistic multiterminal transport
,”
Phys. Rev. Lett.
120
,
090601
(
2018
).
9.
L. P.
Fischer
,
P.
Pietzonka
, and
U.
Seifert
, “
Large deviation function for a driven underdamped particle in a periodic potential
,”
Phys. Rev. E
97
,
022143
(
2018
).
10.
A.
Dechant
, “
Multidimensional thermodynamic uncertainty relations
,”
J. Phys. A: Math. Theor.
52
,
035001
(
2018
).
11.
K.
Macieszczak
,
K.
Brandner
, and
J. P.
Garrahan
, “
Unified thermodynamic uncertainty relations in linear response
,”
Phys. Rev. Lett.
121
,
130601
(
2018
).
12.
G.
Falasco
,
M.
Esposito
, and
J.-C.
Delvenne
, “
Unifying thermodynamic uncertainty relations
,”
New J. Phys.
22
,
053046
(
2020
).
13.
S.
Lee
,
M.
Ha
, and
H.
Jeong
, “
Quantumness and thermodynamic uncertainty relation of the finite-time Otto cycle
,”
Phys. Rev. E
103
,
022136
(
2021
).
14.
S.
Saryal
,
O.
Sadekar
, and
B. K.
Agarwalla
, “
Thermodynamic uncertainty relation for energy transport in a transient regime: A model study
,”
Phys. Rev. E
103
,
022141
(
2021
).
15.
N. J.
López-Alamilla
and
R. U. L.
Cachi
, “
A model of minimal entropy generation for cytoskeletal transport systems with multiple interacting motors
,”
Biophys. Chem.
288
,
106853
(
2022
).
16.
Y.
Song
and
C.
Hyeon
, “
Thermodynamic cost, speed, fluctuations, and error reduction of biological copy machines
,”
J. Phys. Chem. Lett.
11
,
3136
3143
(
2020
).
17.
M. W.
Jack
,
N. J.
López-Alamilla
, and
K. J.
Challis
, “
Thermodynamic uncertainty relations and molecular-scale energy conversion
,”
Phys. Rev. E
101
,
062123
(
2020
).
18.
G.
Paneru
,
S.
Dutta
,
T.
Tlusty
, and
H. K.
Pak
, “
Reaching and violating thermodynamic uncertainty bounds in information engines
,”
Phys. Rev. E
102
,
032126
(
2020
).
19.
L. M.
Cangemi
,
V.
Cataudella
,
G.
Benenti
,
M.
Sassetti
, and
G.
De Filippis
, “
Violation of thermodynamics uncertainty relations in a periodically driven work-to-work converter from weak to strong dissipation
,”
Phys. Rev. B
102
,
165418
(
2020
).
20.
A. A. S.
Kalaee
,
A.
Wacker
, and
P. P.
Potts
, “Violating the thermodynamic uncertainty relation in the three-level maser,” arXiv:2103.07791 (2021).
21.
A.
Dechant
and
S.-I.
Sasa
, “
Improving thermodynamic bounds using correlations
,”
Phys. Rev. X
11
,
041061
(
2021
).
22.
K.
Svoboda
and
S. M.
Block
, “
Force and velocity measured for single kinesin molecules
,”
Cell
77
,
773
784
(
1994
).
23.
H.
Itoh
,
A.
Takahashi
,
K.
Adachi
,
H.
Noji
,
R.
Yasuda
,
M.
Yoshida
, and
K.
Kinosita
, “
Mechanically driven ATP synthesis by F1-ATPase
,”
Nature
427
,
465
468
(
2004
).
24.
S.
Toyabe
,
T.
Watanabe-Nakayama
,
T.
Okamoto
,
S.
Kudo
, and
E.
Muneyukia
, “
Thermodynamic efficiency and mechanochemical coupling of F1-ATPase
,”
Proc. Natl. Acad. Sci. U.S.A.
108
,
17951
17956
(
2011
).
25.
M. O.
Magnasco
, “
Molecular combustion motors
,”
Phys. Rev. Lett.
72
,
2656
2659
(
1994
).
26.
R. D.
Astumian
and
I.
Derényi
, “
Fluctuation driven transport and models of molecular motors and pumps
,”
Eur. Biophys. J.
27
,
474
489
(
1998
).
27.
A. B.
Kolomeisky
, “
Motor proteins and molecular motors: How to operate machines at the nanoscale
,”
J. Phys.: Condens. Matter
25
,
463101
(
2013
).
28.
K. J.
Challis
and
M. W.
Jack
, “
Thermal fluctuation statistics in a molecular motor described by a multidimensional master equation
,”
Phys. Rev. E
88
,
062136
(
2013
).
29.
P. T. T.
Nguyen
,
K. J.
Challis
, and
M. W.
Jack
, “
Local discretization method for overdamped Brownian motion on a potential with multiple deep wells
,”
Phys. Rev. E
94
,
052127
(
2016
).
30.
K. J.
Challis
, “
Tight-binding derivation of a discrete-continuous description of mechanochemical coupling in a molecular motor
,”
Phys. Rev. E
97
,
062158
(
2018
).
31.
A.
Parmeggiani
,
F.
Jülicher
,
A.
Ajdari
, and
J.
Prost
, “
Energy transduction of isothermal ratchets: Generic aspects and specific examples close to and far from equilibrium
,”
Phys. Rev. E
60
,
2127
2140
(
1999
).
32.
A. W. C.
Lau
,
D.
Lacoste
, and
K.
Mallick
, “
Nonequilibrium fluctuations and mechanochemical couplings of a molecular motor
,”
Phys. Rev. Lett.
99
,
158102
(
2007
).
33.
R. D.
Astumian
,
S.
Mukherjee
, and
A.
Warshel
, “
The physics and physical chemistry of molecular machines
,”
ChemPhysChem
17
,
1719
1741
(
2016
).
34.
J.
Uhde
,
M.
Keller
,
E.
Sackmann
,
A.
Parmeggiani
, and
E.
Frey
, “
Internal motility in stiffening actin-myosin networks
,”
Phys. Rev. Lett.
93
,
268101
(
2004
).
35.
I.
Neri
,
N.
Kern
, and
A.
Parmeggiani
, “
Modeling cytoskeletal traffic: An interplay between passive diffusion and active transport
,”
Phys. Rev. Lett.
110
,
098102
(
2013
).
36.
L.
Ciandrini
,
M.
Romano
, and
A.
Parmeggiani
, “
Stepping and crowding of molecular motors: Statistical kinetics from an exclusion process perspective
,”
Biophys. J.
107
,
1176
1184
(
2014
).
37.
P.
Reimann
,
C.
Van den Broeck
,
H.
Linke
,
P.
Hänggi
,
J. M.
Rubi
, and
A.
Pérez-Madrid
, “
Giant acceleration of free diffusion by use of tilted periodic potentials
,”
Phys. Rev. Lett.
87
,
010602
(
2001
).
38.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
, 4th ed. (
Springer
,
2009
).
39.
R. L.
Stratonovich
, “
The synchronization of a self-oscillator in the presence of noise
,”
Radiotekh. Elektron.
3
,
497
(
1958
).
40.
K. J.
Challis
, “
Numerical study of the tight-binding approach to overdamped Brownian motion on a tilted periodic potential
,”
Phys. Rev. E
94
,
062123
(
2016
).
41.
R. D.
Astumian
, “
Design principles for Brownian molecular machines: How to swim in molasses and walk in a hurricane
,”
Phys. Chem. Chem. Phys.
9
,
5067
5083
(
2007
).
42.
N. J.
López-Alamilla
,
M. W.
Jack
, and
K. J.
Challis
, “
Analysing single-molecule trajectories to reconstruct free-energy landscapes of cyclic motor proteins
,”
J. Theor. Biol.
462
,
321
328
(
2019
).
43.
N. J.
López-Alamilla
,
M. W.
Jack
, and
K. J.
Challis
, “
Enhanced diffusion and the eigenvalue band structure of Brownian motion in tilted periodic potentials
,”
Phys. Rev. E
102
,
042405
(
2020
).
44.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
,
2265
2279
(
1931
).
You do not currently have access to this content.