We presented a methodology to approximate the entropy production for Brownian motion in a tilted periodic potential. The approximation stems from the well known thermodynamic uncertainty relation. By applying a virial-like expansion, we provided a tighter lower limit solely in terms of the drift velocity and diffusion. The approach presented is systematically analyzed in the tight-binding regime. We also provide a relative simple rule to validate using the tight-binding approach based on drift and diffusion relations rather than energy barriers and forces. We also discuss the implications of our results outside the tight-binding regime.
REFERENCES
1.
A. C.
Barato
and U.
Seifert
, “Thermodynamic uncertainty relation for biomolecular processes
,” Phys. Rev. Lett.
114
, 158101
(2015
). 2.
A. C.
Barato
and U.
Seifert
, “Cost and precision of Brownian clocks
,” Phys. Rev. X
6
, 041053
(2016
).3.
P.
Pietzonka
, A. C.
Barato
, and U.
Seifert
, “Universal bound on the efficiency of molecular motors
,” J. Stat. Mech.: Theory Exp.
2016
, 124004
. 4.
P.
Pietzonka
and U.
Seifert
, “Universal trade-off between power, efficiency, and constancy in steady-state heat engines
,” Phys. Rev. Lett.
120
, 190602
(2018
). 5.
T. R.
Gingrich
, J. M.
Horowitz
, N.
Perunov
, and J. L.
England
, “Dissipation bounds all steady-state current fluctuations
,” Phys. Rev. Lett.
116
, 120601
(2016
). 6.
A.
Rosas
, C.
Van den Broeck
, and K.
Lindenberg
, “Stochastic thermodynamics for a periodically driven single-particle pump
,” Phys. Rev. E
96
, 052135
(2017
). 7.
W.
Hwang
and C.
Hyeon
, “Energetic costs, precision, and transport efficiency of molecular motors
,” J. Phys. Chem. Lett.
9
, 513
–520
(2018
). 8.
K.
Brandner
, T.
Hanazato
, and K.
Saito
, “Thermodynamic bounds on precision in ballistic multiterminal transport
,” Phys. Rev. Lett.
120
, 090601
(2018
). 9.
L. P.
Fischer
, P.
Pietzonka
, and U.
Seifert
, “Large deviation function for a driven underdamped particle in a periodic potential
,” Phys. Rev. E
97
, 022143
(2018
). 10.
A.
Dechant
, “Multidimensional thermodynamic uncertainty relations
,” J. Phys. A: Math. Theor.
52
, 035001
(2018
). 11.
K.
Macieszczak
, K.
Brandner
, and J. P.
Garrahan
, “Unified thermodynamic uncertainty relations in linear response
,” Phys. Rev. Lett.
121
, 130601
(2018
). 12.
G.
Falasco
, M.
Esposito
, and J.-C.
Delvenne
, “Unifying thermodynamic uncertainty relations
,” New J. Phys.
22
, 053046
(2020
). 13.
S.
Lee
, M.
Ha
, and H.
Jeong
, “Quantumness and thermodynamic uncertainty relation of the finite-time Otto cycle
,” Phys. Rev. E
103
, 022136
(2021
). 14.
S.
Saryal
, O.
Sadekar
, and B. K.
Agarwalla
, “Thermodynamic uncertainty relation for energy transport in a transient regime: A model study
,” Phys. Rev. E
103
, 022141
(2021
). 15.
N. J.
López-Alamilla
and R. U. L.
Cachi
, “A model of minimal entropy generation for cytoskeletal transport systems with multiple interacting motors
,” Biophys. Chem.
288
, 106853
(2022
).16.
Y.
Song
and C.
Hyeon
, “Thermodynamic cost, speed, fluctuations, and error reduction of biological copy machines
,” J. Phys. Chem. Lett.
11
, 3136
–3143
(2020
). 17.
M. W.
Jack
, N. J.
López-Alamilla
, and K. J.
Challis
, “Thermodynamic uncertainty relations and molecular-scale energy conversion
,” Phys. Rev. E
101
, 062123
(2020
). 18.
G.
Paneru
, S.
Dutta
, T.
Tlusty
, and H. K.
Pak
, “Reaching and violating thermodynamic uncertainty bounds in information engines
,” Phys. Rev. E
102
, 032126
(2020
). 19.
L. M.
Cangemi
, V.
Cataudella
, G.
Benenti
, M.
Sassetti
, and G.
De Filippis
, “Violation of thermodynamics uncertainty relations in a periodically driven work-to-work converter from weak to strong dissipation
,” Phys. Rev. B
102
, 165418
(2020
). 20.
A. A. S.
Kalaee
, A.
Wacker
, and P. P.
Potts
, “Violating the thermodynamic uncertainty relation in the three-level maser,” arXiv:2103.07791 (2021).21.
A.
Dechant
and S.-I.
Sasa
, “Improving thermodynamic bounds using correlations
,” Phys. Rev. X
11
, 041061
(2021
).22.
K.
Svoboda
and S. M.
Block
, “Force and velocity measured for single kinesin molecules
,” Cell
77
, 773
–784
(1994
). 23.
H.
Itoh
, A.
Takahashi
, K.
Adachi
, H.
Noji
, R.
Yasuda
, M.
Yoshida
, and K.
Kinosita
, “Mechanically driven ATP synthesis by -ATPase
,” Nature
427
, 465
–468
(2004
). 24.
S.
Toyabe
, T.
Watanabe-Nakayama
, T.
Okamoto
, S.
Kudo
, and E.
Muneyukia
, “Thermodynamic efficiency and mechanochemical coupling of -ATPase
,” Proc. Natl. Acad. Sci. U.S.A.
108
, 17951
–17956
(2011
). 25.
M. O.
Magnasco
, “Molecular combustion motors
,” Phys. Rev. Lett.
72
, 2656
–2659
(1994
). 26.
R. D.
Astumian
and I.
Derényi
, “Fluctuation driven transport and models of molecular motors and pumps
,” Eur. Biophys. J.
27
, 474
–489
(1998
). 27.
A. B.
Kolomeisky
, “Motor proteins and molecular motors: How to operate machines at the nanoscale
,” J. Phys.: Condens. Matter
25
, 463101
(2013
).28.
K. J.
Challis
and M. W.
Jack
, “Thermal fluctuation statistics in a molecular motor described by a multidimensional master equation
,” Phys. Rev. E
88
, 062136
(2013
). 29.
P. T. T.
Nguyen
, K. J.
Challis
, and M. W.
Jack
, “Local discretization method for overdamped Brownian motion on a potential with multiple deep wells
,” Phys. Rev. E
94
, 052127
(2016
). 30.
K. J.
Challis
, “Tight-binding derivation of a discrete-continuous description of mechanochemical coupling in a molecular motor
,” Phys. Rev. E
97
, 062158
(2018
). 31.
A.
Parmeggiani
, F.
Jülicher
, A.
Ajdari
, and J.
Prost
, “Energy transduction of isothermal ratchets: Generic aspects and specific examples close to and far from equilibrium
,” Phys. Rev. E
60
, 2127
–2140
(1999
). 32.
A. W. C.
Lau
, D.
Lacoste
, and K.
Mallick
, “Nonequilibrium fluctuations and mechanochemical couplings of a molecular motor
,” Phys. Rev. Lett.
99
, 158102
(2007
). 33.
R. D.
Astumian
, S.
Mukherjee
, and A.
Warshel
, “The physics and physical chemistry of molecular machines
,” ChemPhysChem
17
, 1719
–1741
(2016
). 34.
J.
Uhde
, M.
Keller
, E.
Sackmann
, A.
Parmeggiani
, and E.
Frey
, “Internal motility in stiffening actin-myosin networks
,” Phys. Rev. Lett.
93
, 268101
(2004
). 35.
I.
Neri
, N.
Kern
, and A.
Parmeggiani
, “Modeling cytoskeletal traffic: An interplay between passive diffusion and active transport
,” Phys. Rev. Lett.
110
, 098102
(2013
). 36.
L.
Ciandrini
, M.
Romano
, and A.
Parmeggiani
, “Stepping and crowding of molecular motors: Statistical kinetics from an exclusion process perspective
,” Biophys. J.
107
, 1176
–1184
(2014
). 37.
P.
Reimann
, C.
Van den Broeck
, H.
Linke
, P.
Hänggi
, J. M.
Rubi
, and A.
Pérez-Madrid
, “Giant acceleration of free diffusion by use of tilted periodic potentials
,” Phys. Rev. Lett.
87
, 010602
(2001
). 38.
C. W.
Gardiner
, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
, 4th ed. (Springer
, 2009
).39.
R. L.
Stratonovich
, “The synchronization of a self-oscillator in the presence of noise
,” Radiotekh. Elektron.
3
, 497
(1958
).40.
K. J.
Challis
, “Numerical study of the tight-binding approach to overdamped Brownian motion on a tilted periodic potential
,” Phys. Rev. E
94
, 062123
(2016
). 41.
R. D.
Astumian
, “Design principles for Brownian molecular machines: How to swim in molasses and walk in a hurricane
,” Phys. Chem. Chem. Phys.
9
, 5067
–5083
(2007
). 42.
N. J.
López-Alamilla
, M. W.
Jack
, and K. J.
Challis
, “Analysing single-molecule trajectories to reconstruct free-energy landscapes of cyclic motor proteins
,” J. Theor. Biol.
462
, 321
–328
(2019
).43.
N. J.
López-Alamilla
, M. W.
Jack
, and K. J.
Challis
, “Enhanced diffusion and the eigenvalue band structure of Brownian motion in tilted periodic potentials
,” Phys. Rev. E
102
, 042405
(2020
).44.
L.
Onsager
, “Reciprocal relations in irreversible processes. II
,” Phys. Rev.
38
, 2265
–2279
(1931
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.