Individuals can make choices for themselves that are beneficial or detrimental to the entire group. Consider two losing choices that some individuals have to make on behalf of the group. Is it possible that the losing choices combine to give a winning outcome? We show that it is possible through a variant of Parrondo’s paradox—the preference aggregation Parrondo’s paradox (PAPP). This new variant of Parrondo’s paradox makes use of an aggregate rule that combines with a decision-making heuristic that can be applied to individuals or parts of the social group. The aim of this work is to discuss this PAPP framework and exemplify it on a social network. This work enhances existing research by constructing a feedback loop that allows individuals in the social network to adapt its behavior according to the outcome of the Parrondo’s games played.

1.
N. B.
Tuma
,
Social Dynamics Models and Methods
(
Elsevier
,
1984
).
2.
C.
Sarkar
and
S.
Jalan
, “
Social patterns revealed through random matrix theory
,”
Europhys. Lett.
108
,
48003
(
2014
).
3.
C.
Sarkar
and
S.
Jalan
, “
Randomness and structure in collaboration networks: A random matrix analysis
,”
IEEE Trans. Comput. Social Syst.
3
,
132
138
(
2016
).
4.
D. M. J.
Lazer
,
A.
Pentland
,
D. J.
Watts
,
S.
Aral
,
S.
Athey
,
N.
Contractor
,
D.
Freelon
,
S.
Gonzalez-Bailon
,
G.
King
,
H.
Margetts
,
A.
Nelson
,
M. J.
Salganik
,
M.
Strohmaier
,
A.
Vespignani
, and
C.
Wagner
, “
Computational social science: Obstacles and opportunities
,”
Science
369
,
1060
1062
(
2020
).
5.
G. P.
Harmer
and
D.
Abbott
, “
Losing strategies can win by Parrondo’s paradox
,”
Nature
402
,
864
(
1999
).
6.
G. P.
Harmer
and
D.
Abbott
, “
A review of Parrondo’s paradox
,”
Fluct. Noise Lett.
2
,
R71
R107
(
2002
).
7.
J. M.
Koh
and
K. H.
Cheong
, “
Generalized solutions of Parrondo’s games
,”
Adv. Sci.
7
,
2001126
(
2020
).
8.
C. E. M.
Pearce
, “
Entropy, Markov information sources and Parrondo games
,”
AIP Conf. Proc.
511
,
207
(
2000
).
9.
C.-H.
Chang
and
T. Y.
Tsong
, “
Truncation and reset process on the dynamics of Parrondo’s games
,”
Phys. Rev. E
67
,
025101(R)
(
2003
).
10.
D. C.
Osipovitch
,
C.
Barratt
, and
P. M.
Schwartz
, “
Systems chemistry and Parrondo’s paradox: Computational models of thermal cycling
,”
New J. Chem.
33
,
2022
(
2009
).
11.
K. H.
Cheong
,
D. B.
Saakian
, and
R.
Zadourian
, “
Allison mixture and the two-envelope problem
,”
Phys. Rev. E
96
,
062303
(
2017
).
12.
T.
Wen
,
J. W.
Lai
, and
K. H.
Cheong
, “
Switching between two losing stocks may enable paradoxical win: An empirical analysis
,”
Fractals
(published online 2022).
13.
J. W.
Lai
and
K. H.
Cheong
, “
Parrondo’s paradox from classical to quantum: A review
,”
Nonlinear Dyn.
100
,
849
861
(
2020
).
14.
J. W.
Lai
and
K. H.
Cheong
, “
Parrondo effect in quantum coin-toss simulations
,”
Phys. Rev. E
101
,
052212
(
2020
).
15.
J. W.
Lai
,
J. R. A.
Tan
,
H.
Lu
,
Z. R.
Yap
, and
K. H.
Cheong
, “
Parrondo paradoxical walk using four-sided quantum coins
,”
Phys. Rev. E
102
,
012213
(
2020
).
16.
J.
Rajendran
and
C.
Benjamin
, “
Playing a true Parrondo’s game with a three-state coin on a quantum walk
,”
Europhys. Lett.
122
,
40004
(
2018
).
17.
J.
Rajendran
and
C.
Benjamin
, “
Implementing Parrondo’s paradox with two-coin quantum walks
,”
R. Soc. Open Sci.
5
,
171599
(
2018
).
18.
K. H.
Cheong
,
T.
Wen
, and
J. W.
Lai
, “
Relieving cost of epidemic by Parrondo’s paradox: A COVID-19 case study
,”
Adv. Sci.
7
,
2002324
(
2020
).
19.
Z. X.
Tan
and
K. H.
Cheong
, “
Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction
,”
eLife
6
,
e21673
(
2017
).
20.
K. H.
Cheong
,
Z. X.
Tan
, and
Y. H.
Ling
, “
A time-based switching scheme for nomadic-colonial alternation under noisy conditions
,”
Commun. Nonlinear Sci. Numer. Simul.
60
,
107
114
(
2018
).
21.
K. H.
Cheong
,
T.
Wen
,
S.
Benler
,
J. M.
Koh
, and
E. V.
Koonin
, “
Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo’s paradox
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2115145119
(
2022
).
22.
T.
Wen
,
E. V.
Koonin
, and
K. H.
Cheong
, “
An alternating active-dormitive strategy enables disadvantaged prey to outcompete the perennially active prey through Parrondo’s paradox
,”
BMC Biol.
19
,
1
10
(
2021
).
23.
K. H.
Cheong
,
J. M.
Koh
, and
M. C.
Jones
, “
Paradoxical survival: Examining the Parrondo effect across biology
,”
BioEssays
41
,
1900027
(
2019
).
24.
T.
Wen
,
Q.
Gao
,
T.
Kalmár-Nagy
,
Y.
Deng
, and
K. H.
Cheong
, “
A review of predator–prey systems with dormancy of predators
,”
Nonlinear Dyn.
107
,
3271
3289
(
2022
).
25.
T.
Wen
,
K. H.
Cheong
,
J. W.
Lai
,
J. M.
Koh
, and
E. V.
Koonin
, “
Extending the lifespan of multicellular organisms via periodic and stochastic intercellular competition
,”
Phys. Rev. Lett.
128
,
218101
(
2022
).
26.
J. W.
Lai
and
K. H.
Cheong
, “
Social dynamics and Parrondo’s paradox: A narrative review
,”
Nonlinear Dyn.
101
,
1
20
(
2020
).
27.
L.
Din's
and
J. M.
Parrondo
, “
Inefficiency of voting in Parrondo games
,”
Phys. A
343
,
701
711
(
2004
).
28.
J. M.
Parrondo
,
L.
Dinis
,
E.
García-Toraño
, and
B.
Sotillo
, “
Collective decision making and paradoxical games
,”
Eur. Phys. J.: Spec. Top.
143
,
39
46
(
2007
).
29.
H. F.
Ma
,
K. W.
Cheung
,
G. C.
Lui
,
D.
Wu
, and
K. Y.
Szeto
, “
Effect of information exchange in a social network on investment
,”
Comput. Econ.
54
,
1491
1503
(
2017
).
30.
J. W.
Lai
and
K. H.
Cheong
, “
Evaluation of single-prioritization voting systems in controlled collective Parrondo’s games
,”
Nonlinear Dyn.
107
,
2965
2974
(
2022
).
31.
P.
Amengual
and
R.
Toral
, “
Truels, or survival of the weakest
,”
Comput. Sci. Eng.
8
,
88
95
(
2006
).
32.
C. M.
Arizmendi
, “
Paradoxical way for losers in a dating game
,”
AIP Conf. Proc.
913
,
20
(
2007
).
33.
P.
Laureti
and
Y.-C.
Zhang
, “
Matching games with partial information
,”
Phys. A
324
,
49
65
(
2003
).
34.
R.
Toral
, “
Capital redistribution brings wealth by Parrondo’s paradox
,”
Fluct. Noise Lett.
2
,
L305
L311
(
2002
).
35.
J. W.
Lai
,
J.
Chang
,
L. K.
Ang
, and
K. H.
Cheong
, “
Multi-level information fusion to alleviate network congestion
,”
Inf. Fusion
63
,
248
255
(
2020
).
36.
L.-G.
Wang
,
N.-G.
Xie
,
G.
Xu
,
C.
Wang
,
Y.
Chen
, and
Y.
Ye
, “
Game-model research on coopetition behavior of Parrondo’s paradox based on network
,”
Fluct. Noise Lett.
10
,
77
91
(
2011
).
37.
Y.
Ye
,
N.-G.
Xie
,
L.-G.
Wang
,
L.
Wang
, and
Y.-W.
Cen
, “
Cooperation and competition in history-dependent Parrondo’s game on networks
,”
Fluct. Noise Lett.
10
,
323
336
(
2011
).
38.
Y.
Ye
,
K. H.
Cheong
,
Y.-W.
Cen
, and
N.-G.
Xie
, “
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
,”
Sci. Rep.
6
,
1
17
(
2016
).
39.
Y.
Ye
,
X.-S.
Zhang
,
L.
Liu
, and
N.-G.
Xie
, “
Effects of group interactions on the network Parrondo’s games
,”
Phys. A
583
,
126271
(
2021
).
40.
R.
Cohen
,
A. F.
Rozenfeld
,
N.
Schwartz
,
D.
ben Avraham
, and
S.
Havlin
, “Directed and non-directed scale-free networks,” in
Statistical Mechanics of Complex Networks
(
Springer
,
Berlin
,
2003
), pp.
23
45
.
41.
G. A.
Pavlopoulos
,
M.
Secrier
,
C. N.
Moschopoulos
,
T. G.
Soldatos
,
S.
Kossida
,
J.
Aerts
,
R.
Schneider
, and
P. G.
Bagos
, “
Using graph theory to analyze biological networks
,”
Biodata Min.
4
,
1
27
(
2011
).
42.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
43.
A.
Theory
and
S.
Mathematics
, Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Association for Computing Machinery, 2003).
44.
J. W.
Lai
and
K. H.
Cheong
, “
Risk-taking in social Parrondo’s games can lead to Simpson’s paradox
,”
Chaos Solitons Fractals
158
,
111911
(
2022
).
45.
NetworkX developers, see https://networkx.github.io “NetworkX Network Analysis in Python” (accessed August 1, 2020).
46.
S.-H.
Yook
,
H.
Jeong
, and
A.-L.
Barabasi
, “
Modeling the Internet’s large-scale topology
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
13382
13386
(
2002
).
47.
R.
Pastor-Satorras
,
A.
Vázquez
, and
A.
Vespignani
, “
Dynamical and correlation properties of the Internet
,”
Phys. Rev. Lett.
87
,
258701
(
2001
).
48.
G.
Hawkins
,
K.
Nesbitt
, and
S.
Brown
, “
Dynamic difficulty balancing for cautious players and risk takers
,”
Int. J. Comput. Games Technol.
2012
,
1
10
(
2012
).
49.
M.
Nowak
and
K.
Sigmund
, “
A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s dilemma game
,”
Nature
364
,
56
58
(
1993
).
You do not currently have access to this content.