A visibility graph transforms time series into graphs, facilitating signal processing by advanced graph data mining algorithms. In this paper, based on the classic limited penetrable visibility graph method, we propose a novel mapping method named circular limited penetrable visibility graph, which replaces the linear visibility line in limited penetrable visibility graph with nonlinear visibility arc for pursuing more flexible and reasonable mapping of time series. Tests on degree distribution and some common network features of the generated graphs from typical time series demonstrate that our circular limited penetrable visibility graph can effectively capture the important features of time series and show higher robust classification performance than the traditional limited penetrable visibility graph in the presence of noise. The experiments on real-world time-series datasets of radio and electroencephalogram signals also suggest that the structural features provided by a circular limited penetrable visibility graph, rather than a limited penetrable visibility graph, are more useful for time-series classification, leading to higher accuracy. This classification performance can be further enhanced through structural feature expansion by adopting subgraph networks. All of these results demonstrate the effectiveness of our circular limited penetrable visibility graph model.

1.
F.
Karim
,
S.
Majumdar
,
H.
Darabi
, and
S.
Chen
, “
LSTM fully convolutional networks for time series classification
,”
IEEE Access
6
,
1662
1669
(
2017
).
2.
Z.
Wang
and
T.
Oates
, “Imaging time-series to improve classification and imputation,” arXiv:1506.00327 (2015).
3.
Y.
Liu
,
Y.
Liu
, and
C.
Yang
, “
Modulation recognition with graph convolutional network
,”
IEEE Wireless Commun. Lett.
9
,
624
627
(
2020
).
4.
W.
Liao
,
D.
Yang
,
Y.
Wang
, and
X.
Ren
, “
Fault diagnosis of power transformers using graph convolutional network
,”
CSEE J. Power Energy Syst.
7
(
2
),
241
249
(
2020
).
5.
R. V.
Donner
,
Y.
Zou
,
J. F.
Donges
,
N.
Marwan
, and
J.
Kurths
, “
Recurrence networks—A novel paradigm for nonlinear time series analysis
,”
New J. Phys.
12
,
033025
(
2010
).
6.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
7.
L.
Lacasa
,
B.
Luque
,
F.
Ballesteros
,
J.
Luque
, and
J. C.
Nuno
, “
From time series to complex networks: The visibility graph
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
4972
4975
(
2008
).
8.
G.
Nicolis
,
A. G.
Cantu
, and
C.
Nicolis
, “
Dynamical aspects of interaction networks
,”
Int. J. Bifurcation Chaos
15
,
3467
3480
(
2005
).
9.
T.
Lozano-Pérez
and
M. A.
Wesley
, “
An algorithm for planning collision-free paths among polyhedral obstacles
,”
Commun. ACM
22
,
560
570
(
1979
).
10.
G.
Nagy
, “
Terrain visibility
,”
Comput. Graph.
18
,
763
773
(
1994
).
11.
B.
Luque
,
L.
Lacasa
,
F.
Ballesteros
, and
J.
Luque
, “
Horizontal visibility graphs: Exact results for random time series
,”
Phys. Rev. E
80
,
046103
(
2009
).
12.
T.-T.
Zhou
,
N.-D.
Jin
,
Z.-K.
Gao
, and
Y.-B.
Luo
, “
Limited penetrable visibility graph for establishing complex network from time series
,”
Acta Phys. Sin.
61
,
86
96
(
2012
).
13.
Z.-K.
Gao
,
T.-T.
Zhou
,
L.-D.
Hu
, and
N.-D.
Jin
, “
Limited penetrable visibility graph from two-phase flow for investigating flow pattern dynamics
,”
Acta Phys. Sin.
62
,
110507
(
2013
).
14.
J.
Wang
,
C.
Yang
,
R.
Wang
,
H.
Yu
,
Y.
Cao
, and
J.
Liu
, “
Functional brain networks in Alzheimer’s disease: EEG analysis based on limited penetrable visibility graph and phase space method
,”
Physica A
460
,
174
187
(
2016
).
15.
R.
Wang
,
J.
Gao
,
Z.
Gao
,
X.
Gao
, and
H.
Jiang
, “
Complex network theory-based condition recognition of electromechanical system in process industry
,”
Sci. China Technol. Sci.
59
,
604
617
(
2016
).
16.
S.
Supriya
,
S.
Siuly
,
H.
Wang
,
J.
Cao
, and
Y.
Zhang
, “
Weighted visibility graph with complex network features in the detection of epilepsy
,”
IEEE Access
4
,
6554
6566
(
2016
).
17.
L.
Lacasa
,
A.
Nunez
,
É.
Roldán
,
J. M.
Parrondo
, and
B.
Luque
, “
Time series irreversibility: A visibility graph approach
,”
Eur. Phys. J. B
85
,
1
11
(
2012
).
18.
J. F.
Donges
,
R. V.
Donner
, and
J.
Kurths
, “
Testing time series irreversibility using complex network methods
,”
Europhys. Lett.
102
,
10004
(
2013
).
19.
Y.
Yang
,
J.
Wang
,
H.
Yang
, and
J.
Mang
, “
Visibility graph approach to exchange rate series
,”
Physica A
388
,
4431
4437
(
2009
).
20.
M.-C.
Qian
,
Z.-Q.
Jiang
, and
W.-X.
Zhou
, “
Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices
,”
J. Phys. A: Math. Theor.
43
,
335002
(
2010
).
21.
N.
Wang
,
D.
Li
, and
Q.
Wang
, “
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
,”
Physica A
391
,
6543
6555
(
2012
).
22.
M.
Ahmadlou
,
H.
Adeli
, and
A.
Adeli
, “
New diagnostic EEG markers of the Alzheimer’s disease using visibility graph
,”
J. Neural Transm.
117
,
1099
1109
(
2010
).
23.
Z.-G.
Shao
, “
Network analysis of human heartbeat dynamics
,”
Appl. Phys. Lett.
96
,
073703
(
2010
).
24.
A.
Charakopoulos
,
G.
Katsouli
, and
T.
Karakasidis
, “
Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis
,”
Physica A
495
,
436
453
(
2018
).
25.
J.
Elsner
,
T.
Jagger
, and
E.
Fogarty
, “
Visibility network of United States hurricanes
,”
Geophys. Res. Lett.
36
,
L16702
, https://doi.org/10.1029/2009GL039129 (
2009
).
26.
Q.
Xuan
,
J.
Wang
,
M.
Zhao
,
J.
Yuan
,
C.
Fu
,
Z.
Ruan
, and
G.
Chen
, “
Subgraph networks with application to structural feature space expansion
,”
IEEE Trans. Knowl. Data Eng.
33
,
2776
2789
(
2019
).
27.
S.
Wold
,
K.
Esbensen
, and
P.
Geladi
, “
Principal component analysis
,”
Chemometr. Intell. Lab. Syst.
2
,
37
52
(
1987
).
28.
W.
Li
,
H.
Wang
,
L.
Zhuang
,
S.
Han
,
H.
Zhang
, and
J.
Wang
, “
Weighted multi-scale limited penetrable visibility graph for exploring atrial fibrillation rhythm
,”
Signal Process.
189
,
108288
(
2021
).
29.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
30.
A.
Narayanan
,
M.
Chandramohan
,
R.
Venkatesan
,
L.
Chen
,
Y.
Liu
, and
S.
Jaiswal
, “Graph2vec: Learning distributed representations of graphs,” arXiv:1707.05005 (2017).
31.
Q.
Le
and
T.
Mikolov
, “Distributed representations of sentences and documents,” in International Conference on Machine Learning (PMLR, 2014), pp. 1188–1196.
32.
T.
Mikolov
,
K.
Chen
,
G.
Corrado
, and
J.
Dean
, “Efficient estimation of word representations in vector space,” arXiv:1301.3781 (2013).
33.
T. J.
O’Shea
,
J.
Corgan
, and
T. C.
Clancy
, “Convolutional radio modulation recognition networks,” in International Conference on Engineering Applications of Neural Networks (Springer, 2016), pp. 213–226.
34.
R. E.
Barr
,
J. J.
Ackmann
, and
J.
Sonnenfeld
, “
Peak-detection algorithm for EEG analysis
,”
Int. J. Biomed. Comput.
9
,
465
476
(
1978
).
35.
M. S.
Manikandan
and
K.
Soman
, “
A novel method for detecting R-peaks in electrocardiogram (ECG) signal
,”
Biomed. Signal Process. Control.
7
,
118
128
(
2012
).
36.
G.
Palshikar
et al., “Simple algorithms for peak detection in time-series,” in Proceedings of the 1st International Conference on Advanced Data Analysis, Business Analytics and Intelligence (ICADABAI, 2009), Vol. 122, pp. 1–13.
37.
A.
Ahmadi
,
V.
Shalchyan
, and
M. R.
Daliri
, “A new method for epileptic seizure classification in EEG using adapted wavelet packets,” in 2017 Electric Electronics, Computer Science, Biomedical Engineering Meeting (EBBT) (IEEE, 2017), pp. 1–4.
38.
E.
Kabir
,
S.
Siuly
,
J.
Cao
, and
H.
Wang
, “
A computer aided analysis scheme for detecting epileptic seizure from EEG data
,”
Int. J. Comput. Intel. Syst.
11
,
663
671
(
2018
).
39.
A.
Hamad
,
E. H.
Houssein
,
A. E.
Hassanien
, and
A. A.
Fahmy
, “Hybrid grasshopper optimization algorithm and support vector machines for automatic seizure detection in EEG signals,” in International Conference on Advanced Machine Learning Technologies and Applications (Springer, 2018), pp. 82–91.
40.
Z.
Chen
,
H.
Cui
,
J.
Xiang
,
K.
Qiu
,
L.
Huang
,
S.
Zheng
,
S.
Chen
,
Q.
Xuan
, and
X.
Yang
, “Signet: An advanced deep learning framework for radio signal classification,” arXiv:2011.03525 (2020).
41.
R. G.
Andrzejak
,
K.
Lehnertz
,
F.
Mormann
,
C.
Rieke
,
P.
David
, and
C. E.
Elger
, “
Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain stat
,”
Phys. Rev. E
64
,
061907
(
2001
).
You do not currently have access to this content.