This work investigates experimentally and numerically frontal polymerization in a thermally anisotropic system with parallel copper strips embedded in 1,6-hexanediol diacrylate resin. Both experiments and multiphysics finite element analyses reveal that the front propagation in the thermally anisotropic system is orientation-dependent, leading to variations in the front shape and the front velocity due to the different front–metal strip interaction mechanisms along and across the metal strips. The parameters entering the cure kinetics model used in this work are chosen to capture the key characteristics of the polymerization front, i.e., the front temperature and velocity. Numerical parametric analyses demonstrate that the front velocity in the directions parallel and perpendicular to the metal strips increases as the system size decreases and approaches the analytical prediction for homogenized systems. A two-dimensional homogenized model for anisotropic frontal polymerization in the metal–resin system is proposed.

1.
N. M.
Chechilo
,
R. J.
Khvilivitskii
, and
N. S.
Enikolopyan
, “
On the phenomenon of polymerization reaction spreading
,”
Dokl. Akad. Nauk SSSR
204
,
1180
1181
(
1972
).
2.
B.
Khanukaev
,
M.
Kozhushner
,
N.
Enikolopyan
, and
N.
Chechilo
, “
Theory of the propagation of a polymerization front
,”
Combust. Explos. Shock Waves
10
,
17
21
(
1974
).
3.
J. A.
Pojman
,
V. M.
Ilyashenko
, and
A. M.
Khan
, “
Free-radical frontal polymerization: Self-propagating thermal reaction waves
,”
J. Chem. Soc. Faraday
92
,
2825
2837
(
1996
).
4.
J. A.
Pojman
,
G.
Gunn
,
C.
Patterson
,
J.
Owens
, and
C.
Simmons
, “
Frontal dispersion polymerization
,”
J. Phys. Chem. B
102
,
3927
3929
(
1998
).
5.
D.
Nuvoli
,
V.
Alzari
,
J. A.
Pojman
,
V.
Sanna
,
A.
Ruiu
,
D.
Sanna
,
G.
Malucelli
, and
A.
Mariani
, “
Synthesis and characterization of functionally gradient materials obtained by frontal polymerization
,”
ACS Appl. Mater. Interfaces
7
,
3600
3606
(
2015
).
6.
M.
Sangermano
,
A.
D’Anna
,
C.
Marro
,
N.
Klikovits
, and
R.
Liska
, “
UV-activated frontal polymerization of glass fibre reinforced epoxy composites
,”
Compos. B Eng.
143
,
168
171
(
2018
).
7.
A.
Mariani
,
S.
Bidali
,
S.
Fiori
,
M.
Sangermano
,
G.
Malucelli
,
R.
Bongiovanni
, and
A.
Priola
, “
UV-ignited frontal polymerization of an epoxy resin
,”
J. Polym. Sci. A: Polym. Chem.
42
,
2066
2072
(
2004
).
8.
S.
Chen
,
Y.
Tian
,
L.
Chen
, and
T.
Hu
, “
Epoxy resin/polyurethane hybrid networks synthesized by frontal polymerization
,”
Chem. Mater.
18
,
2159
2163
(
2006
).
9.
K. A.
Arutiunian
,
S. P.
Davtyan
,
B. A.
Rozenberg
, and
N. S.
Enikolopyan
, “
Curing of epoxy resins of bis-phenol A by amines under conditions of reaction front propagation
,”
Dokl. Akad. Nauk SSSR
223
,
657
660
(
1975
).
10.
Y.
Chekanov
,
D.
Arrington
,
G.
Brust
, and
J. A.
Pojman
, “
Frontal curing of epoxy resins: Comparison of mechanical and thermal properties to batch-cured materials
,”
J. Appl. Polym. Sci.
66
,
1209
1216
(
1997
).
11.
C.
Nason
,
T.
Roper
,
C.
Hoyle
, and
J. A.
Pojman
, “
UV-induced frontal polymerization of multifunctional (meth)acrylates
,”
Macromolecules
38
,
5506
5512
(
2005
).
12.
S.
Bynum
,
M.
Tullier
,
C.
Morejon-Garcia
,
J.
Guidry
,
E.
Runnoe
, and
J. A.
Pojman
, “
The effect of acrylate functionality on frontal polymerization velocity and temperature
,”
J. Polym. Sci. A: Polym. Chem.
57
,
982
988
(
2019
).
13.
A.
Ruiu
,
D.
Sanna
,
V.
Alzari
,
D.
Nuvoli
, and
A.
Mariani
, “
Advances in the frontal ring opening metathesis polymerization of dicyclopentadiene
,”
J. Polym. Sci. A: Polym. Chem.
52
,
2776
2780
(
2014
).
14.
A.
Mariani
,
S.
Fiori
,
Y.
Chekanov
, and
J. A.
Pojman
, “
Frontal ring-opening metathesis polymerization of dicyclopentadiene
,”
Macromolecules
34
,
6539
6541
(
2001
).
15.
T.
Holt
,
K.
Fazende
,
E.
Jee
,
Q.
Wu
, and
J. A.
Pojman
, “
Cure-on-demand wood adhesive based on the frontal polymerization of acrylates
,”
J. Appl. Polym. Sci.
133
,
1180
(
2016
).
16.
J. D.
Mota-Morales
,
M. C.
Gutiérrez
,
M. L.
Ferrer
,
I. C.
Sanchez
,
E. A.
Elizalde-Peña
,
J. A.
Pojman
,
F. D.
Monte
, and
G.
Luna-Bárcenas
, “
Deep eutectic solvents as both active fillers and monomers for frontal polymerization
,”
J. Polym. Sci. A: Polym. Chem.
51
,
1767
1773
(
2013
).
17.
C.
Yu
,
C.-F.
Wang
, and
S.
Chen
, “
Robust self-healing host–guest gels from magnetocaloric radical polymerization
,”
Adv. Funct. Mater.
24
,
1235
1242
(
2014
).
18.
G.
Caria
,
V.
Alzari
,
O.
Monticelli
,
D.
Nuvoli
,
J. M.
Kenny
, and
A.
Mariani
, “
Poly(N,N-dimethylacrylamide) hydrogels obtained by frontal polymerization
,”
J. Polym. Sci. A: Polym. Chem.
47
,
1422
1428
(
2009
).
19.
I. D.
Robertson
,
M.
Yourdkhani
,
P. J.
Centellas
,
J. E.
Aw
,
D. G.
Ivanoff
,
E.
Goli
,
E. M.
Lloyd
,
L. M.
Dean
,
N. R.
Sottos
,
P. H.
Geubelle
et al., “
Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization
,”
Nature
557
,
223
227
(
2018
).
20.
D.
Purslow
and
R.
Childs
, “
Autoclave moulding of carbon fibre-reinforced epoxies
,”
Composites
17
,
127
136
(
1986
).
21.
E.
Lloyd
,
E.
Feinberg
,
Y.
Gao
,
S.
Peterson
,
B.
Soman
,
J.
Hemmer
,
L.
Dean
,
Q.
Wu
,
P.
Geubelle
,
N.
Sottos
et al., “
Spontaneous patterning during frontal polymerization
,”
ACS Cent. Sci.
7
,
603
612
(
2021
).
22.
I. D.
Robertson
,
E. L.
Pruitt
, and
J. S.
Moore
, “
Frontal ring-opening metathesis polymerization of exo-dicyclopentadiene for low catalyst loadings
,”
ACS Macro Lett.
5
,
593
596
(
2016
).
23.
Y. A.
Chekanov
and
J. A.
Pojman
, “
Preparation of functionally gradient materials via frontal polymerization
,”
J. Appl. Polym. Sci.
78
,
2398
2404
(
2000
).
24.
Y.
Gao
,
F.
Shaon
,
A.
Kumar
,
S.
Bynum
,
D.
Gary
,
D.
Sharp
,
J. A.
Pojman
, and
P. H.
Geubelle
, “
Rapid frontal polymerization achieved with thermally conductive metal strips
,”
Chaos
31
,
073113
(
2021
).
25.
L.
Gross
and
V.
Volpert
, “
Weakly nonlinear stability analysis of frontal polymerization
,”
Stud. Appl. Math.
110
,
351
375
(
2003
).
26.
D. P.
Gary
,
S.
Bynum
,
B. D.
Thompson
,
B. R.
Groce
,
A.
Sagona
,
I. M.
Hoffman
,
C.
Morejon-Garcia
,
C.
Weber
, and
J. A.
Pojman
, “
Thermal transport and chemical effects of fillers on free-radical frontal polymerization
,”
J. Polym. Sci.
58
,
2267
2277
(
2020
).
27.
A. D.
Tran
,
T.
Koch
,
P.
Knaack
, and
R.
Liska
, “
Radical induced cationic frontal polymerization for preparation of epoxy composites
,”
Compos. A: Appl. Sci. Manuf.
132
,
105855
(
2020
).
28.
H.
Liu
,
H.
Wei
, and
J.
Moore
, “
Frontal ring-opening metathesis copolymerization: Deviation of front velocity from mixing rules
,”
ACS Macro Lett.
8
,
846
851
(
2019
).
29.
Y.
Gao
,
M. A.
Dearborn
,
S.
Vyas
,
A.
Kumar
,
J.
Hemmer
,
Z.
Wang
,
Q.
Wu
,
O.
Alshangiti
,
J. S.
Moore
,
A. P.
Esser-Kahn
et al., “
Manipulating frontal polymerization and instabilities with phase-changing microparticles
,”
J. Phys. Chem. B
125
,
7537
7545
(
2021
).
30.
B. A.
Suslick
,
K. J.
Stawiasz
,
J. E.
Paul
,
N. R.
Sottos
, and
J. S.
Moore
, “
Survey of catalysts for frontal ring-opening metathesis polymerization
,”
Macromolecules
54
,
5117
5123
(
2021
).
31.
E.
Goli
,
I. D.
Robertson
,
P. H.
Geubelle
, and
J. S.
Moore
, “
Frontal polymerization of dicyclopentadiene: A numerical study
,”
J. Phys. Chem. B
122
,
4583
4591
(
2018
).
32.
L.
Rongy
and
A.
De Wit
, “
Steady Marangoni flow traveling with chemical fronts
,”
J. Chem. Phys.
124
,
164705
(
2006
).
33.
E.
Goli
,
I. D.
Robertson
,
H.
Agarwal
,
E. L.
Pruitt
,
J. M.
Grolman
,
P. H.
Geubelle
, and
J. S.
Moore
, “
Frontal polymerization accelerated by continuous conductive elements
,”
J. Appl. Polym. Sci.
136
,
47418
(
2019
).
34.
N.
Gill
,
J. A.
Pojman
,
J.
Willis
, and
J.
Whitehead
, Jr., “
Polymer-dispersed liquid-crystal materials fabricated with frontal polymerization
,”
J. Polym. Sci. A: Polym. Chem.
41
,
204
212
(
2003
).
35.
J. A.
Pojman
,
G.
Curtis
, and
V. M.
Ilyashenko
, “
Frontal polymerization in solution
,”
J. Am. Chem. Soc.
118
,
3783
3784
(
1996
).
36.
M.
Bazile
, Jr.,
H. A.
Nichols
,
J. A.
Pojman
, and
V.
Volpert
, “
Effect of orientation on thermoset frontal polymerization
,”
J. Polym. Sci. A: Polym. Chem.
40
,
3504
3508
(
2002
).
37.
Y.
Gao
,
M. A.
Dearborn
,
J.
Hemmer
,
Z.
Wang
,
A. P.
Esser-Kahn
, and
P. H.
Geubelle
, “
Controllable frontal polymerization and spontaneous patterning enabled by phase-changing particles
,”
Small
17
,
2102217
(
2021
).
38.
V. G.
Viner
,
J. A.
Pojman
, and
D.
Golovaty
, “
The effect of phase change materials on the frontal polymerization of a triacrylate
,”
Physica D
239
,
838
847
(
2010
).
39.
S.
Vyas
,
E.
Goli
,
X.
Zhang
, and
P.
Geubelle
, “
Manufacturing of unidirectional glass-fiber-reinforced composites via frontal polymerization: A numerical study
,”
Compos. Sci. Technol.
184
,
107832
(
2019
).
40.
S.
Vyas
,
X.
Zhang
,
E.
Goli
, and
P.
Geubelle
, “
Frontal vs bulk polymerization of fiber-reinforced polymer-matrix composites
,”
Compos. Sci. Technol.
198
,
108303
(
2020
).
41.
N.
Tran
,
Y.-J.
Chang
, and
C.-C.
Wang
, “
Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2
,”
Int. J. Heat Mass Transfer
117
,
787
798
(
2018
).
42.
D.
Gaston
,
C.
Newman
,
G.
Hansen
, and
D.
Lebrun-Grandie
, “
MOOSE: A parallel computational framework for coupled systems of nonlinear equations
,”
Nucl. Eng. Des.
239
,
1768
1778
(
2009
).
43.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
John Wiley & Sons
,
2006
), Vol. 1.
44.
A.
Kumar
,
Y.
Gao
, and
P. H.
Geubelle
, “
Analytical estimates of front velocity in the frontal polymerization of thermoset polymers and composites
,”
J. Polym. Sci.
59
,
1109
1118
(
2021
).

Supplementary Material

You do not currently have access to this content.