We discover the mechanisms of emergence and the link between two types of symmetry-broken states, the unbalanced periodic two-cluster states and solitary states, in coupled excitable systems with attractive and repulsive interactions. The prevalent solitary states in non-locally coupled arrays, whose self-organization is based on successive (order preserving) spiking of units, derive their dynamical features from the corresponding unbalanced cluster states in globally coupled networks. Apart from the states with successive spiking, we also find cluster and solitary states where the interplay of excitability and local multiscale dynamics gives rise to so-called leap-frog activity patterns with an alternating order of spiking between the units. We show that the noise affects the system dynamics by suppressing the multistability of cluster states and by inducing pattern homogenization, transforming solitary states into patterns of patched synchrony.

1.
Y.
Kuramoto
and
D.
Battogtokh
,
Nonlinear Phenom. Complex Syst.
5
,
380
(
2002
); available at http://www.j-npcs.org/abstracts/vol2002/v5no4/v5no4p380.html.
2.
D. M.
Abrams
and
S. H.
Strogatz
,
Phys. Rev. Lett.
93
,
174102
(
2004
).
3.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2003
).
4.
A. E.
Motter
,
Nat. Phys.
6
(
3
),
164
(
2010
).
5.
F. P.
Kemeth
,
S. W.
Haugland
, and
K.
Krischer
,
Chaos
29
,
023107
(
2019
).
6.
W. L.
Ku
,
M.
Girvan
, and
E.
Ott
,
Chaos
25
,
123122
(
2015
).
7.
A.
Ismail
and
P.
Ashwin
,
Dyn. Syst.
30
,
122
(
2015
).
8.
D.
Hansel
,
G.
Mato
, and
C.
Meunier
,
Phys. Rev. E
48
,
3470
(
1993
).
9.
M. J.
Panaggio
and
D. M.
Abrams
,
Nonlinearity
28
,
R67
(
2015
).
10.
O. E.
Omel’chenko
,
Nonlinearity
31
,
R121
(
2018
).
11.
A.
Zakharova
,
Chimera Patterns in Networks: Interplay Between Dynamics, Structure, Noise, and Delay—Understanding Complex Systems
(
Springer Nature
,
Cham, Switzerland
,
2020
).
12.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
,
Z.
Shahriari
,
Z.
Wang
,
S.
Boccaletti
, and
M.
Perc
,
Phys. Rep.
898
,
1
(
2021
).
13.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
,
Phys. Rev. E
89
,
060901
(
2014
).
14.
V.
Maistrenko
,
O.
Sudakov
, and
O.
Osiv
,
Chaos
30
,
063113
(
2020
).
15.
V.
Maistrenko
,
O.
Sudakov
, and
Y.
Maistrenko
,
Eur. Phys. J. Spec. Top.
229
,
2327
(
2020
).
16.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
,
Phys. Rev. E
91
,
022907
(
2015
).
17.
E.
Rybalova
,
V. S.
Anishchenko
,
G. I.
Strelkova
, and
A.
Zakharova
,
Chaos
29
,
071106
(
2019
).
18.
R.
Berner
,
A.
Polanska
,
E.
Schöll
, and
S.
Yanchuk
,
Eur. Phys. J. Spec. Top.
229
,
2183
(
2020
).
19.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
,
Chaos
28
,
011103
(
2018
).
20.
M.
Mikhaylenko
,
L.
Ramlow
,
S.
Jalan
, and
A.
Zakharova
,
Chaos
29
,
023122
(
2019
).
21.
L.
Schülen
,
D. A.
Janzen
,
E. S.
Medeiros
, and
A.
Zakharova
,
Chaos, Solitons Fractals
145
,
110670
(
2021
).
22.
E. V.
Rybalova
,
A.
Zakharova
, and
G. I.
Strelkova
,
Chaos, Solitons Fractals
148
,
111011
(
2021
).
23.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. Lett.
106
,
234102
(
2011
).
24.
P.
Ashwin
and
O.
Burylko
,
Chaos
25
,
013106
(
2015
).
25.
F. P.
Kemeth
,
B.
Fiedler
,
S. W.
Haugland
, and
K.
Krischer
,
J. Phys. Complex.
2
,
025005
(
2021
).
26.
L.
Schmidt
and
K.
Krischer
,
Phys. Rev. Lett.
114
,
034101
(
2015
).
27.
Y.
Zhang
and
A.
Motter
,
Phys. Rev. Lett.
126
,
094101
(
2021
).
28.
B.
Lindner
,
J.
García-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
,
Phys. Rep.
392
,
321
(
2004
).
29.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting
(
MIT Press
,
Cambridge, MA
,
2007
).
30.
R.
Ronge
and
M. A.
Zaks
,
Phys. Rev. E
103
,
012206
(
2021
).
31.
E.
Teichmann
and
M.
Rosenblum
,
Chaos
29
,
093124
(
2019
).
32.
R.
Ronge
and
M. A.
Zaks
,
Eur. Phys. J. Spec. Top.
230
,
2717
(
2021
).
33.
G.
Buzsáki
,
Rhythms of the Brain
(
Oxford University Press
,
New York
,
2006
).
34.
P. A.
Tass
,
Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis
(
Springer
,
Berlin
,
2007
).
35.
K.
Wimmer
,
D. Q.
Nykamp
,
C.
Constantinidis
, and
A.
Compte
,
Nat. Neurosci.
17
,
431
(
2014
).
36.
S.
Kim
,
H.
Rouault
,
S.
Druckmann
, and
V.
Jayaraman
,
Science
356
,
849
(
2017
).
37.
Á.
Byrne
,
D.
Avitabile
, and
S.
Coombes
,
Phys. Rev. E
99
,
012313
(
2019
).
38.
C. R.
Laing
,
W. C.
Troy
,
B.
Gutkin
, and
G. B.
Ermentrout
,
SIAM J. Appl. Math.
63
,
62
(
2002
).
39.
C.
Lainscsek
,
N.
Rungratsameetaweemana
,
S. S.
Cash
, and
T. J.
Sejnowski
,
Chaos
29
,
121106
(
2019
).
40.
R. G.
Andrzejak
,
C.
Rummel
,
F.
Mormann
, and
K.
Schindler
,
Sci. Rep.
6
,
23000
(
2016
).
41.
R.
Berner
,
S.
Vock
,
E.
Schöll
, and
S.
Yanchuk
,
Phys. Rev. Lett.
126
,
028301
(
2021
).
42.
S.
Scialla
,
A.
Loppini
,
M.
Patriarca
, and
E.
Heinsalu
,
Phys. Rev. E
103
,
052211
(
2021
).
43.
W.-Y.
Chiang
,
P.-Y.
Lai
, and
C. K.
Chan
,
Phys. Rev. Lett.
106
,
254102
(
2011
).
44.
S. I.
Shima
and
Y.
Kuramoto
,
Phys. Rev. E
69
,
036213
(
2004
).
45.
M.
Heinrich
,
T.
Dahms
,
V.
Flunkert
,
S. W.
Teitsworth
, and
E.
Schöll
,
New J. Phys.
12
,
113030
(
2010
).
46.
I.
Belykh
,
R.
Reimbayev
, and
K.
Zhao
,
Phys. Rev. E
91
,
062919
(
2015
).
47.
S. R.
Eydam
,
I.
Franović
, and
M.
Wolfrum
,
Phys. Rev. E
99
,
042207
(
2019
).
48.
P.
Goel
and
G. B.
Ermentrout
,
Physica D
163
,
191
(
2002
).
49.
C. D.
Acker
,
N.
Kopell
, and
J. A.
White
,
J. Comput. Neurosci.
15
,
71
(
2003
).
50.
M.
Oh
and
V.
Matveev
,
J. Comput. Neurosci.
26
,
303
(
2009
).
51.
S. K.
Maran
and
C. C.
Canavier
,
J. Comput. Neurosci.
24
,
37
(
2008
).
52.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
, and
M.
Wechselberger
,
SIAM Rev.
54
,
211
(
2012
).
53.
C.
Kuehn
,
Multiple Time Scale Dynamics
(
Springer International Publishing
,
Switzerland
,
2015
).
54.
I.
Franović
,
K.
Todorović
,
N.
Vasović
, and
N.
Burić
,
Phys. Rev. Lett.
108
,
094101
(
2012
).
55.
A.
Zakharova
,
N.
Semenova
,
V.
Anishchenko
, and
E.
Schöll
,
Chaos
27
,
114320
(
2017
).
56.
N.
Semenova
,
A.
Zakharova
,
V.
Anishchenko
, and
E.
Schöll
,
Phys. Rev. Lett.
117
,
014102
(
2016
).
57.
A. N.
Pisarchik
and
U.
Feudel
,
Phys. Rep.
540
,
167
(
2014
).
58.
K.
Kaneko
,
Phys. Rev. Lett.
78
,
2736
(
1997
).
59.
A. N.
Pisarchik
,
R.
Jaimes-Reátegui
,
R.
Sevilla-Escoboza
,
G.
Huerta-Cuillar
, and
M.
Taki
,
Phys. Rev. Lett.
107
,
274101
(
2011
).
60.
S. M.
Baer
and
T.
Erneux
,
SIAM J. Appl. Math.
46
,
721
(
1986
).
61.
I.
Omelchenko
,
O. E.
Omel’chenko
,
P.
Hövel
, and
E.
Schöll
,
Phys. Rev. Lett.
110
,
224101
(
2013
).
62.
A.
Destexhe
and
M.
Rudolph-Lilith
,
Neuronal Noise
(
Springer
,
New York
,
2012
).
63.
M. A.
Zaks
and
P.
Tomov
,
Phys. Rev. E
93
,
020201
(
2016
).
64.
A.
Pikovsky
and
A.
Politi
,
Lyapunov Exponents: A Tool to Explore Complex Dynamics
(
Cambridge University Press
,
Cambridge
,
2016
).
65.
A.
Pikovsky
,
O.
Popovych
, and
Y.
Maistrenko
,
Phys. Rev. Lett.
87
,
044102
(
2001
).
66.
M.
Zaks
and
A.
Pikovsky
,
Sci. Rep.
7
,
4648
(
2017
).
67.
E. J.
Doedel
and
B. E.
Oldeman
,
AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations
(
Concordia University
,
Montreal
,
2012
).
68.
N.
Kruk
,
Y.
Maistrenko
, and
H.
Koeppl
,
Chaos
30
,
111104
(
2020
).
69.
I.
Franović
,
O. E.
Omel’chenko
, and
M.
Wolfrum
,
Chaos
28
,
071105
(
2018
).
70.
G.
Benettin
,
L.
Galgani
, and
J.-M.
Strelcyn
,
Phys. Rev. A
14
,
2338
(
1976
).
71.
M.
Wolfrum
,
O. E.
Omel’chenko
, and
J.
Sieber
,
Chaos
25
,
053113
(
2015
).
72.
I.
Bačić
and
I.
Franović
,
Chaos
30
,
033123
(
2020
).
73.
I.
Franović
,
S.
Yanchuk
,
S. R.
Eydam
,
I.
Bačić
, and
M.
Wolfrum
,
Chaos
30
,
083109
(
2020
).
74.
H. G.
Rotstein
and
H.
Wu
,
Phys. Rev. E
86
,
066207
(
2012
).
75.
B. E.
Martínez-Zérega
and
A. N.
Pisarchik
,
Commun. Nonlinear Sci. Numer. Simul.
17
,
4023
(
2012
).
You do not currently have access to this content.