In this paper, we present a new method for successfully simulating the dynamics of COVID-19, experimentally focusing on the third wave. This method, namely, the Method of Parallel Trajectories (MPT), is based on the recently introduced self-organized diffusion model. According to this method, accurate simulation of the dynamics of the COVID-19 infected population evolution is accomplished by considering not the total data for the infected population, but successive segments of it. By changing the initial conditions with which each segment of the simulation is produced, we achieve close and detailed monitoring of the evolution of the pandemic, providing a tool for evaluating the overall situation and the fine-tuning of the restrictive measures. Finally, the application of the proposed MPT on simulating the pandemic's third wave dynamics in Greece and Italy is presented, verifying the method's effectiveness.

1.
Y.
Contoyiannis
,
S. G.
Stavrinides
,
M. P.
Hanias
,
M.
Kampitakis
,
P.
Papadopoulos
,
R.
Picos
, and
S. M.
Potirakis
, “
A universal physics-based model describing COVID-19 dynamics in Europe
,”
Int. J. Environ. Res. Public Health
17
,
6525
(
2020
).
2.
Y.
Contoyiannis
,
S. G.
Stavrinides
,
M. P.
Hanias
,
M.
Kampitakis
,
P.
Papadopoulos
,
R.
Picos
,
S. M.
Potirakis
, and
E. K.
Kosmidis
, “
Criticality in epidemic spread: An application in the case of COVID19 infected population
,”
Chaos
31
,
043109
(
2021
).
3.
Y.
Contoyiannis
,
S.
Potirakis
, and
F.
Diakonos
, “
Stickiness in the order parameter time-series as a signature of criticality
,”
Phys. A
544
,
123508
(
2020
).
4.
Y. F.
Contoyiannis
and
F. K.
Diakonos
, “
Abrupt transition in a sandpile model
,”
Phys. Rev. E
73
,
031303
(
2006
).
5.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
, “
Self-organized criticality: An explanation of 1/f noise
,”
Phys. Rev. Lett.
59
,
381
(
1987
).
6.
P.
Bak
,
How Nature Works
(
Springer-Verlag
,
1996
).
7.
S.
Ion
and
G.
Marinoschi
, “
A self-organizing criticality mathematical model for contamination and epidemic spreading
,”
Discrete Contin. Dyn. Syst.-B
22
,
383
(
2017
).
8.
N.
Stollenwerk
, “
Self-organized criticality in human epidemiology
,”
AIP Conf. Proc.
779
,
191
194
(
2005
).
9.
J. C.
Miller
, “
Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes
,”
Infect. Dis. Modell.
2
,
35
55
(
2017
).
10.
S.
Gao
,
Z.
Teng
,
J. J.
Nieto
, and
A.
Torres
, “
Analysis of an SIR epidemic model with pulse vaccination and distributed time delay
,”
J. Biomed. Biotechnol.
2007
,
064870
.
11.
T.
Lux
, “
The social dynamics of COVID-19
,”
Phys. A
567
,
125710
(
2021
).
12.
Y.
Huang
,
Y.
Wu
, and
W.
Zhang
, “
Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19
,”
Chaos, Solitons Fractals
139
,
110041
(
2020
).
13.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
1965
).
14.
H.
Everett
, “Theory of the universal wavefunction,” Ph.D. thesis (Princeton University, 1956, 1973).
15.
D. G.
Luenberger
,
Least-Squares Estimation: Optimization by Vector Space Methods
(
John Wiley & Sons
,
1969, 1997
), pp.
78
102
.
16.
J.
Wolberg
,
Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments
(
Springer
,
2005
).
17.
Y.
Ben-Shabat
and
S.
Gould
, “DeepFit: 3D surface fitting via neural network weighted least squares,” arXiv:1812.00709 (
2020
).
18.
C. M.
Bishop
and
C. M.
Roach
, “
Fast curve fitting using neural networks
,”
Rev. Sci. Instrum.
63
,
4450
4456
(
1992
).
19.
O.
Ghasemalizadeh
,
S.
Khaleghian
, and
S.
Taheri
, “
A review of optimization techniques in artificial networks
,”
Int. J. Adv. Res.
4
,
1668
1686
(
2016
).
20.
I.
De Falco
,
A. D.
Cioppa
,
P.
Natale
, and
E.
Tarantino
, “
Artificial neural networks optimization by means of evolutionary algorithms
,” in
Soft Computing in Engineering Design and Manufacturing
, edited by
P. K.
Chawdhry
,
R.
Roy
, and
R. K.
Pant
(
Springer
,
1998
).
21.
P. A.
Gagniuc
,
Markov Chains: From Theory to Implementation and Experimentation
(
John Wiley & Sons
,
2017
).
22.
S.
Meyn
and
R. L.
Tweedie
,
Markov Chains and Stochastic Stability
(
Cambridge University Press
,
2009
).
23.
T.
Brett
,
M.
Ajelli
,
Q.-H.
Liu
,
M. G.
Krauland
,
J. J.
Grefenstette
,
W. G.
van Panhuis
,
A.
Vespignani
,
J. M.
Drake
, and
P.
Rohani
, “
Detecting critical slowing down in high-dimensional epidemiological systems
,”
PLoS Comput. Biol.
16
,
e1007679
(
2020
).
24.
See https://eody.gov.gr/epidimiologika-statistika-dedomena/ektheseis-covid-19 for “Hellenic National Public Health Organization” (last accessed June 5, 2021).
25.
H.
Schuster
and
W.
Just
,
Deterministic Chaos: An Introduction
(
Wiley-VCH
,
2005
).
26.
See https://ourworldindata.org/coronavirus-data-explorer for “Our World in Data” (last accessed May 28, 2021).
You do not currently have access to this content.