We propose a new type of locally interacting quantum circuits—quantum cellular automata—that are generated by unitary interactions round-a-face (IRF). Specifically, we discuss a set (or manifold) of dual-unitary IRFs with local Hilbert space dimension d [DUIRF(d)], which generate unitary evolutions both in space and time directions of an extended 1+1 dimensional lattice. We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite-dimensional completely positive trace preserving unital maps in complete analogy to recently studied circuits made of dual-unitary brick gates (DUBGs). The simplest non-vanishing local correlation functions in dual-unitary IRF circuits are shown to involve observables non-trivially supported on two neighboring sites. We completely characterize the ten-dimensional manifold of DUIRF(2) for qubits (d=2) and provide, for d=3,4,,7, empirical estimates of its dimensionality based on numerically determined dimensions of tangent spaces at an ensemble of random instances of dual-unitary IRF gates. In parallel, we apply the same algorithm to determine dimDUBG(d) and show that they are of similar order though systematically larger than dimDUIRF(d) for d=2,3,,7. It is remarkable that both sets have a rather complex topology for d3 in the sense that the dimension of the tangent space varies among different randomly generated points of the set. Finally, we provide additional data on dimensionality of the chiral extension of DUBG circuits with distinct local Hilbert spaces of dimensions dd residing at even/odd lattice sites.

1
D.
Poilblanc
,
T.
Ziman
,
J.
Bellissard
,
F.
Mila
, and
G.
Montambaux
, “
Poisson vs GOE statistics in integrable and non-integrable quantum Hamiltonians
,”
Europhys. Lett.
22
,
537
(
1993
).
2
G.
Montambaux
,
D.
Poilblanc
,
J.
Bellissard
, and
C.
Sire
, “
Quantum chaos in spin-fermion models
,”
Phys. Rev. Lett.
70
,
497
(
1993
).
3
T. C.
Hsu
and
J.
Angles d’Auriac
, “
Level repulsion in integrable and almost-integrable quantum spin models
,”
Phys. Rev. B
47
,
14291
(
1993
).
4
M. L.
Mehta
,
Random Matrices
(
Elsevier
,
2004
).
5
P.
Kos
,
M.
Ljubotina
, and
T.
Prosen
, “
Many-body quantum chaos: Analytic connection to random matrix theory
,”
Phys. Rev. X
8
,
021062
(
2018
).
6
A.
Chan
,
A.
De Luca
, and
J. T.
Chalker
, “
Solution of a minimal model for many-body quantum chaos
,”
Phys. Rev. X
8
,
041019
(
2018
).
7
A.
Chan
,
A.
De Luca
, and
J. T.
Chalker
, “
Spectral statistics in spatially extended chaotic quantum many-body systems
,”
Phys. Rev. Lett.
121
,
060601
(
2018
).
8
A. J.
Friedman
,
A.
Chan
,
A.
De Luca
, and
J. T.
Chalker
, “
Spectral statistics and many-body quantum chaos with conserved charge
,”
Phys. Rev. Lett.
123
,
210603
(
2019
).
9
D.
Roy
and
T.
Prosen
, “
Random matrix spectral form factor in kicked interacting fermionic chains
,”
Phys. Rev. E
102
,
060202
(
2020
).
10
B.
Bertini
,
P.
Kos
, and
T.
Prosen
, “
Exact spectral form factor in a minimal model of many-body quantum chaos
,”
Phys. Rev. Lett.
121
,
264101
(
2018
).
11
B.
Bertini
,
P.
Kos
, and
T.
Prosen
, “Random matrix spectral form factor of dual-unitary quantum circuits,” arXiv:2012.12254 (2021).
12
J.
Maldacena
,
S. H.
Shenker
, and
D.
Stanford
, “
A bound on chaos
,”
J. High Energy Phys.
2016
,
106
.
13
H.
Gharibyan
,
M.
Hanada
,
B.
Swingle
, and
M.
Tezuka
, “
Quantum Lyapunov spectrum
,”
J. High Energy Phys.
2019
,
82
.
14
D. A.
Roberts
and
B.
Yoshida
, “
Chaos and complexity by design
,”
J. High Energy Phys.
2017
,
121
.
15
R.
Alicki
and
M.
Fannes
, “
Defining quantum dynamical entropy
,”
Lett. Math. Phys.
32
,
75
82
(
1994
).
16
T.
Prosen
, “
Chaos and complexity of quantum motion
,”
J. Phys. A: Math. Theor.
40
,
7881
(
2007
).
17
T.
Farrelly
, “
A review of quantum cellular automata
,”
Quantum
4
,
368
(
2020
).
18
L.
Piroli
and
J. I.
Cirac
, “
Quantum cellular automata, tensor networks, and area laws
,”
Phys. Rev. Lett.
125
,
190402
(
2020
).
19
A.
Nahum
,
J.
Ruhman
,
S.
Vijay
, and
J.
Haah
, “
Quantum entanglement growth under random unitary dynamics
,”
Phys. Rev. X
7
,
031016
(
2017
).
20
A.
Nahum
,
S.
Vijay
, and
J.
Haah
, “
Operator spreading in random unitary circuits
,”
Phys. Rev. X
8
,
021014
(
2018
).
21
V.
Khemani
,
A.
Vishwanath
, and
D. A.
Huse
, “
Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws
,”
Phys. Rev. X
8
,
031057
(
2018
).
22
C. W.
von Keyserlingk
,
T.
Rakovszky
,
F.
Pollmann
, and
S. L.
Sondhi
, “
Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws
,”
Phys. Rev. X
8
,
021013
(
2018
).
23
T.
Prosen
and
I.
Pižorn
, “
Operator space entanglement entropy in a transverse Ising chain
,”
Phys. Rev. A
76
,
032316
(
2007
).
24
B.
Bertini
,
P.
Kos
, and
T.
Prosen
, “
Exact correlation functions for dual-unitary lattice models in 1+1 dimensions
,”
Phys. Rev. Lett.
123
,
210601
(
2019
).
25
P. W.
Claeys
and
A.
Lamacraft
, “
Ergodic and nonergodic dual-unitary quantum circuits with arbitrary local Hilbert space dimension
,”
Phys. Rev. Lett.
126
,
100603
(
2021
).
26
L.
Piroli
,
B.
Bertini
,
J. I.
Cirac
, and
T.
Prosen
, “
Exact dynamics in dual-unitary quantum circuits
,”
Phys. Rev. B
101
,
094304
(
2020
).
27
B.
Bertini
,
P.
Kos
, and
T.
Prosen
, “
Entanglement spreading in a minimal model of maximal many-body quantum chaos
,”
Phys. Rev. X
9
,
021033
(
2019
).
28
B.
Bertini
,
P.
Kos
, and
T.
Prosen
, “
Operator entanglement in local quantum circuits I: Chaotic dual-unitary circuits
,”
SciPost Phys.
8
,
067
(
2020
).
29
B.
Bertini
,
P.
Kos
, and
T.
Prosen
, “
Operator entanglement in local quantum circuits II: Solitons in chains of qubits
,”
SciPost Phys.
8
,
068
(
2020
).
30
I.
Reid
and
B.
Bertini
, “Entanglement barriers in dual-unitary circuits,” arXiv:2103.12794 (2021).
31
B.
Bertini
and
L.
Piroli
, “
Scrambling in random unitary circuits: Exact results
,”
Phys. Rev. B
102
,
064305
(
2020
).
32
P. W.
Claeys
and
A.
Lamacraft
, “
Maximum velocity quantum circuits
,”
Phys. Rev. Res.
2
,
033032
(
2020
).
33
S.
Gopalakrishnan
and
A.
Lamacraft
, “
Unitary circuits of finite depth and infinite width from quantum channels
,”
Phys. Rev. B
100
,
064309
(
2019
).
34
M.
Akila
,
D.
Waltner
,
B.
Gutkin
, and
T.
Guhr
, “
Particle-time duality in the kicked Ising spin chain
,”
J. Phys. A: Math. Theor.
49
,
375101
(
2016
).
35
P.
Braun
,
D.
Waltner
,
M.
Akila
,
B.
Gutkin
, and
T.
Guhr
, “
Transition from quantum chaos to localization in spin chains
,”
Phys. Rev. E
101
,
052201
(
2020
).
36
A.
Chan
,
A. D.
Luca
, and
J. T.
Chalker
, “Spectral Lyapunov exponents in chaotic and localized many-body quantum systems,” arXiv:2012.05295 (2020).
37
S. J.
Garratt
and
J. T.
Chalker
, “Many-body quantum chaos and the local pairing of Feynman histories,” arXiv:2008.01697 (2020).
38
M.
Ippoliti
and
V.
Khemani
, “
Postselection-free entanglement dynamics via spacetime duality
,”
Phys. Rev. Lett.
126
,
060501
(
2021
).
39
M.
Ippoliti
,
T.
Rakovszky
, and
V.
Khemani
, “Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality,” arXiv:2103.06873 (2021).
40
T.-C.
Lu
and
T.
Grover
, “Entanglement transitions via space-time rotation of quantum circuits,” arXiv:2103.06356 (2021).
41
M.
Sonner
,
A.
Lerose
, and
D. A.
Abanin
, “Influence functional of many-body systems: Temporal entanglement and matrix-product state representation,” arXiv:2103.13741 (2021).
42
P.
Kos
,
B.
Bertini
, and
T.
Prosen
, “
Chaos and ergodicity in extended quantum systems with noisy driving
,”
Phys. Rev. Lett.
126
,
190601
(
2021
).
43
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
2002
).
44
J. W.
Robbin
, “
A structural stability theorem
,”
Ann. Math.
94
,
447
493
(
1971
).
45
C.
Robinson
, “
Structural stability of vector fields
,”
Ann. Math.
99
,
154
175
(
1974
).
46
H.
Bernien
,
S.
Schwartz
,
A.
Keesling
,
H.
Levine
,
A.
Omran
,
H.
Pichler
,
S.
Choi
,
A. S.
Zibrov
,
M.
Endres
,
M.
Greiner
et al., “
Probing many-body dynamics on a 51-atom quantum simulator
,”
Nature
551
,
579
584
(
2017
).
47
B.
Buča
,
K.
Klobas
, and
T.
Prosen
, “Rule 54: Exactly solvable model of nonequilibrium statistical mechanics,” arXiv:2103.16543 (2021).
48
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Academic Press
,
1982
).
49
G. E.
Andrews
,
R. J.
Baxter
, and
P. J.
Forrester
, “
Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities
,”
J. Stat. Phys.
35
,
193
266
(
1984
).
50
D.
Bianchini
,
E.
Ercolessi
,
P. A.
Pearce
, and
F.
Ravanini
, “
RSOS quantum chains associated with off-critical minimal models and parafermions
,”
J. Stat. Mech.: Theor. Exp.
2015
,
P03010
.
51
A.
Bobenko
,
M.
Bordemann
,
C.
Gunn
, and
U.
Pinkall
, “
On two integrable cellular automata
,”
Commun. Math. Phys.
158
,
127
134
(
1993
).
52
L.
Zadnik
and
M.
Fagotti
, “
The folded spin-1/2 XXZ model: I. Diagonalisation, jamming, and ground state properties
,”
SciPost Phys. Core
4
,
10
(
2021
).
53
L.
Zadnik
,
K.
Bidzhiev
, and
M.
Fagotti
, “
The folded spin-1/2 XXZ model: II. Thermodynamics and hydrodynamics with a minimal set of charges
,”
SciPost Phys.
10
,
99
(
2021
).
54
B.
Pozsgay
,
T.
Gombor
,
A.
Hutsalyuk
,
Y.
Jiang
,
L.
Pristyák
, and
E.
Vernier
, “An integrable spin chain with Hilbert space fragmentation and solvable real time dynamics,” arXiv:2105.02252 (2021).
55
I. M.
Georgescu
,
S.
Ashhab
, and
F.
Nori
, “
Quantum simulation
,”
Rev. Mod. Phys.
86
,
153
185
(
2014
).
56
The extension of the entire analysis in our paper to arbitrarily spatially and temporally modulated gates is straightforward; therefore, we do not mention it any further.
57
Throughout the paper, we use the convention that the row/column of a matrix is labeled by a lower/upper index, while multi-indices at the same level label tensor- (Kronecker-) product spaces.
58
We could as well define more general class of IRF circuits where dimensions of local spaces at even/odd lattice sites would be different, dd, but this would require two different IRF gates at even/odd half-time steps (3) and will not be considered here.
59
Due to unitarity constraints, these d4 complex amplitudes can be, in fact, parameterized in terms of d4 real parameters; i.e., each of d2 unitaries uik has d2 real parameters.
60
L. E.
Hillberry
,
M. T.
Jones
,
D. L.
Vargas
,
P.
Rall
,
N. Y.
Halpern
,
N.
Bao
,
S.
Notarnicola
,
S.
Montangero
, and
L. D.
Carr
, “Entangled quantum cellular automata, physical complexity, and goldilocks rules,” arXiv:2005.01763 (2021).
61
T.
Iadecola
and
S.
Vijay
, “
Nonergodic quantum dynamics from deformations of classical cellular automata
,”
Phys. Rev. B
102
,
180302
(
2020
).
62
S.
Sugiura
,
T.
Kuwahara
, and
K.
Saito
, “
Many-body scar state intrinsic to periodically driven system
,”
Phys. Rev. Res.
3
,
L012010
(
2021
).
63
I.
Lesanovsky
and
H.
Katsura
, “
Interacting Fibonacci anyons in a Rydberg gas
,”
Phys. Rev. A
86
,
041601
(
2012
).
64
C. J.
Turner
,
A. A.
Michailidis
,
D. A.
Abanin
,
M.
Serbyn
, and
Z.
Papić
, “
Weak ergodicity breaking from quantum many-body scars
,”
Nat. Phys.
14
,
745
749
(
2018
).
65
T.
Prosen
and
C.
Mejía-Monasterio
, “
Integrability of a deterministic cellular automaton driven by stochastic boundaries
,”
J. Phys. A Math. Theor.
49
,
185003
(
2016
).
66
K.
Klobas
,
B.
Bertini
, and
L.
Piroli
, “
Exact thermalization dynamics in the “Rule 54” quantum cellular automaton
,”
Phys. Rev. Lett.
126
,
160602
(
2021
).
67
J. W.
Wilkinson
,
K.
Klobas
,
T.
Prosen
, and
J. P.
Garrahan
, “
Exact solution of the Floquet-PXP cellular automaton
,”
Phys. Rev. E
102
,
062107
(
2020
).
68
M. C.
Bañuls
,
M. B.
Hastings
,
F.
Verstraete
, and
J. I.
Cirac
, “
Matrix product states for dynamical simulation of infinite chains
,”
Phys. Rev. Lett.
102
,
240603
(
2009
).
69
B.
Gutkin
,
P.
Braun
,
M.
Akila
,
D.
Waltner
, and
T.
Guhr
, “Local correlations in dual-unitary kicked chains,” arXiv:2001.01298 (2020).
70
B.
Pozsgay
, Private communication (unpublished note, July 2020).
71
J.
Deschamps
,
I.
Nechita
, and
C.
Pellegrini
, “
On some classes of bipartite unitary operators
,”
J. Phys. A: Math. Theor.
49
,
335301
(
2016
).
72
Z.
Ma
and
X.
Wang
, “
Matrix realignment and partial-transpose approach to entangling power of quantum evolutions
,”
Phys. Rev. A
75
,
014304
(
2007
).
73
B.
Jonnadula
,
P.
Mandayam
,
K.
Życzkowski
, and
A.
Lakshminarayan
, “
Entanglement measures of bipartite quantum gates and their thermalization under arbitrary interaction strength
,”
Phys. Rev. Res.
2
,
043126
(
2020
).
74
S.
Aravinda
,
S. A.
Rather
, and
A.
Lakshminarayan
, “From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy,” arXiv:2101.04580 (2021).
75
Note, however, that in spite of some formal similarities, these matrices are not unistochastic.
76
Note that this feature is similar to kicked Hadamard spin chains studied in Ref. 69. It would be interesting to investigate if there is a link between those systems and DU IRF circuits.
77
S. A.
Rather
,
S.
Aravinda
, and
A.
Lakshminarayan
, “
Creating ensembles of dual unitary and maximally entangling quantum evolutions
,”
Phys. Rev. Lett.
125
,
070501
(
2020
).
78
V.
Pasquier
, “Etiology of IRF models,” in Yang-Baxter Equation in Integrable Systems (World Scientific, 1990), pp. 482–491.
You do not currently have access to this content.