We considered the phase coherence dynamics in a Two-Frequency and Two-Coupling (TFTC) model of coupled oscillators, where coupling strength and natural oscillator frequencies for individual oscillators may assume one of two values (positive/negative). The bimodal distributions for the coupling strengths and frequencies are either correlated or uncorrelated. To study how correlation affects phase coherence, we analyzed the TFTC model by means of numerical simulations and exact dimensional reduction methods allowing to study the collective dynamics in terms of local order parameters [S. Watanabe and S. H. Strogatz, Physica D 74(3–4), 197–253 (1994); E. Ott and T. M. Antonsen, Chaos 18(3), 037113 (2008)]. The competition resulting from distributed coupling strengths and natural frequencies produces nontrivial dynamic states. For correlated disorder in frequencies and coupling strengths, we found that the entire oscillator population splits into two subpopulations, both phase-locked (Lock–Lock) or one phase-locked, and the other drifting (Lock–Drift), where the mean-fields of the subpopulations maintain a constant non-zero phase difference. For uncorrelated disorder, we found that the oscillator population may split into four phase-locked subpopulations, forming phase-locked pairs which are either mutually frequency-locked (Stable Lock–Lock–Lock–Lock) or drifting (Breathing Lock–Lock–Lock–Lock), thus resulting in a periodic motion of the global synchronization level. Finally, we found for both types of disorder that a state of Incoherence exists; however, for correlated coupling strengths and frequencies, incoherence is always unstable, whereas it is only neutrally stable for the uncorrelated case. Numerical simulations performed on the model show good agreement with the analytic predictions. The simplicity of the model promises that real-world systems can be found which display the dynamics induced by correlated/uncorrelated disorder.

1.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
(
3–4
),
197
253
(
1994
).
2.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
(
3
),
037113
(
2008
).
3.
D. C.
Michaels
,
E. P.
Matyas
, and
J.
Jalife
, “
Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis
,”
Circ. Res.
61
(
5
),
704
714
(
1987
).
4.
C.
Liu
,
D. R.
Weaver
,
S. H.
Strogatz
, and
S. M.
Reppert
, “
Cellular construction of a circadian clock: Period determination in the suprachiasmatic nuclei
,”
Cell
91
(
6
),
855
860
(
1997
).
5.
S.
Dano
,
P. G.
Sorensen
, and
F.
Hynne
, “
Sustained oscillations in living cells
,”
Nature
402
(
6759
),
320
322
(
1999
).
6.
T. M.
Massie
,
B.
Blasius
,
G.
Weithoff
,
U.
Gaedke
, and
G. F.
Fussmann
, “
Cycles, phase synchronization, and entrainment in single-species phytoplankton populations
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
9
),
4236
4241
(
2010
).
7.
S. H.
Strogatz
,
D. M.
Abrams
,
A.
McRobie
,
B.
Eckhardt
, and
E.
Ott
, “
Theoretical mechanics: Crowd synchrony on the millennium bridge
,”
Nature
438
(
7064
),
43
44
(
2005
).
8.
J.
Pantaleone
, “
Synchronization of metronomes
,”
Am. J. Phys.
70
(
10
),
992
1000
(
2002
).
9.
K.
Wiesenfeld
,
P.
Colet
, and
S.
Strogatz
, “
Frequency locking in Josephson arrays: Connection with the Kuramoto model
,”
Phys. Rev. E
57
(
2
),
1563
1569
(
1998
).
10.
I. Z.
Kiss
,
Y.
Zhai
, and
J. L.
Hudson
, “
Emerging coherence in a population of chemical oscillators
,”
Science
296
(
5573
),
1676
1678
(
2002
).
11.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
, “
Chimera and phase-cluster states in populations of coupled chemical oscillators
,”
Nat. Phys.
8
(
8
),
662
665
(
2012
).
12.
M.
Rohden
,
A.
Sorge
,
M.
Timme
, and
D.
Witthaut
, “
Self-organized synchronization in decentralized power grids
,”
Phys. Rev. Lett.
109
(
6
),
064101
(
2012
).
13.
S. H.
Strogatz
,
Sync: The Emerging Science of Spontaneous Order
(
Hyperion
,
2003
).
14.
J. D.
Crawford
, “
Amplitude expansions for instabilities in populations of globally-coupled oscillators
,”
J. Stat. Phys.
74
(
5
),
1047
1084
(
1994
).
15.
D.
Pazó
and
E.
Montbrió
, “
Existence of hysteresis in the Kuramoto model with bimodal frequency distributions
,”
Phys. Rev. E
80
(
4
),
046215
(
2009
).
16.
E. A.
Martens
,
E.
Barreto
,
S. H.
Strogatz
,
E.
Ott
,
P.
So
, and
T. M.
Antonsen
, “
Exact results for the Kuramoto model with a bimodal frequency distribution
,”
Phys. Rev. E
79
(
2
),
026204
(
2009
).
17.
B.
Pietras
,
N.
Deschle
, and
A.
Daffertshofer
, “
First-order phase transitions in the Kuramoto model with compact bimodal frequency distributions
,”
Phys. Rev. E
98
(
6
),
062219
(
2018
).
18.
D. M.
Abrams
,
R. E.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
(
8
),
084103
(
2008
).
19.
E.
Montbrió
,
J.
Kurths
, and
B.
Blasius
, “
Synchronization of two interacting populations of oscillators
,”
Phys. Rev. E
70
(
5
),
056125
(
2004
).
20.
M.
Wildie
and
M.
Shanahan
, “
Metastability and chimera states in modular delay and pulse-coupled oscillator networks
,”
Chaos
22
(
4
),
043131
(
2012
).
21.
N.
Deschle
,
A.
Daffertshofer
,
D.
Battaglia
, and
E. A.
Martens
, “
Directed flow of information in chimera states
,”
Front. Appl. Math. Stat.
5
,
28
(
2019
).
22.
E. A.
Martens
,
C.
Bick
, and
M. J.
Panaggio
, “
Chimera states in two populations with heterogeneous phase-lag
,”
Chaos
26
(
9
),
094819
(
2016
).
23.
C.
Bick
,
M. J.
Panaggio
, and
E. A.
Martens
, “
Chaos in Kuramoto oscillator networks
,”
Chaos
28
,
071102
(
2018
).
24.
C.-U.
Choe
,
J.-S.
Ri
, and
R.-S.
Kim
, “
Incoherent chimera and glassy states in coupled oscillators with frustrated interactions
,”
Phys. Rev. E
94
(
3
),
032205
(
2016
).
25.
H.
Hong
,
K. P.
O’Keeffe
, and
S. H.
Strogatz
, “
Phase coherence induced by correlated disorder
,”
Phys. Rev. E
93
,
022219
(
2016
).
26.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
(
1
),
9
(
2020
).
27.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer-Verlag
,
New York
,
1984
).
28.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
29.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization. A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
New York
,
2001
).
30.
J.
Acebrón
,
L.
Bonilla
,
C.
Pérez Vicente
et al., “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
(
1
),
137
(
2005
).
31.
H.
Sompolinsky
,
D.
Golomb
, and
D.
Kleinfeld
, “
Global processing of visual stimuli in a neural network of coupled oscillators
,”
Proc. Natl. Acad. Sci. U.S.A.
87
(
18
),
7200
7204
(
1990
).
32.
M.
Breakspear
,
S.
Heitmann
, and
A.
Daffertshofer
, “
Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model
,”
Front. Hum. Neurosci.
4
,
190
(
2010
).
33.
E. A.
Martens
,
S.
Thutupalli
,
A.
Fourrière
, and
O.
Hallatschek
, “
Chimera states in mechanical oscillator networks
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
26
),
10563
10567
(
2013
).
34.
G.
Heinrich
,
M.
Ludwig
,
J.
Qian
,
B.
Kubala
, and
F.
Marquardt
, “
Collective dynamics in optomechanical arrays
,”
Phys. Rev. Lett.
107
(
4
),
8
11
(
2011
).
35.
D.
Witthaut
and
M.
Timme
, “
Kuramoto dynamics in Hamiltonian systems
,”
Phys. Rev. E
90
(
3
),
032917
(
2014
).
36.
E.
Ott
and
T. M.
Antonsen
, “
Long time evolution of phase oscillator systems
,”
Chaos
19
(
2
),
023117
(
2009
).
37.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
(
16
),
2391
2394
(
1993
).
38.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
).
39.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of heterogeneous oscillator ensembles in terms of collective variables
,”
Physica D
240
(
9–10
),
872
881
(
2011
).
40.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action
,”
Chaos
19
(
4
),
043104
(
2009
).
41.
Deviations in numerical simulations are due to finite size effects and critical slowing down near p=pc.
42.
C. R.
Laing
, “
Chimera states in heterogeneous networks
,”
Chaos
19
(
1
),
013113
(
2009
).
43.
B.
Pietras
and
A.
Daffertshofer
, “
Equivalence of coupled networks and networks with multimodal frequency distributions: Conditions for the bimodal and trimodal case
,”
Phys. Rev. E
94
,
052211
(
2016
).
44.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
, “
Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions
,”
Phys. Rev. E
89
(
6
),
3
7
(
2014
).
45.
E.
Teichmann
and
M.
Rosenblum
, “
Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions
,”
Chaos
29
(
9
),
093124
(
2019
).
46.
A. F.
Taylor
,
M. R.
Tinsley
,
F.
Wang
,
Z.
Huang
, and
K.
Showalter
, “
Dynamical quorum sensing and synchronization in large populations of chemical oscillators
,”
Science
323
(
5914
),
614
617
(
2009
).
47.
J. F.
Totz
,
J.
Rode
,
M. R.
Tinsley
,
K.
Showalter
, and
H.
Engel
, “
Spiral wave chimera states in large populations of coupled chemical oscillators
,”
Nat. Phys.
14
,
282
285
(
2017
).
48.
D.
Călugăru
,
J. F.
Totz
,
E. A.
Martens
, and
H.
Engel
, “
First-order synchronization transition in a large population of relaxation oscillators
,”
Sci. Adv.
6
(
39
),
eabb2637
(
2020
).
49.
M.
Wickramasinghe
and
I. Z.
Kiss
, “
Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns
,”
PLoS One
8
(
11
),
e80586
(
2013
).
You do not currently have access to this content.