This paper investigates the relationship between the spread of the COVID-19 pandemic, the state of community activity, and the financial index performance across 20 countries. First, we analyze which countries behaved similarly in 2020 with respect to one of three multivariate time series: daily COVID-19 cases, Apple mobility data, and national equity index price. Next, we study the trajectories of all three of these attributes in conjunction to determine which exhibited greater similarity. Finally, we investigate whether country financial indices or mobility data responded more quickly to surges in COVID-19 cases. Our results indicate that mobility data and national financial indices exhibited the most similarity in their trajectories, with financial indices responding quicker. This suggests that financial market participants may have interpreted and responded to COVID-19 data more efficiently than governments. Furthermore, results imply that efforts to study community mobility data as a leading indicator for financial market performance during the pandemic were misguided.

1
See https://covid19.apple.com/mobility for “Mobility Trends Reports” (2021); accessed March 30, 2021.
2
A.
Tooze
, see https://www.theguardian.com/business/2020/apr/14/how-coronavirus-almost-brought-down-the-global-financial-system for “How Coronavirus Almost Brought Down the Global Financial System,” The Guardian, April 14, 2020.
3
K.
Galouchko
, see https://www.bloombergquint.com/onweb/they-re-watching-you-traders-mine-mobility-data-to-spot-revival for “Wall Street Mines Apple and Google Mobility Data to Spot Revival,” Bloomberg, May 13, 2020.
4
S.
McDonell
, see https://www.bbc.com/news/world-51338899 for “Coronavirus: US and Australia Close Borders to Chinese Arrivals,” BBC, February 2, 2020.
5
J.
McCurry
, see https://www.theguardian.com/world/2020/apr/23/test-trace-contain-how-south-korea-flattened-its-coronavirus-curve for “Test, Trace, Contain: How South Korea Flattened Its Coronavirus Curve,” The Guardian, April 23, 2020.
6
A.
McCann
,
N.
Popovich
, and
J.
Wu
, see https://www.nytimes.com/interactive/2020/04/05/world/europe/italy-coronavirus-lockdown-reopen.html for “Italy’s Virus Shutdown Came Too Late. What Happens Now?,” The New York Times, April 5, 2020.
7
G.
Scally
,
B.
Jacobson
, and
K.
Abbasi
, “
The UK’s public health response to covid-19
,”
BMJ
369
,
m1932
(
2020
).
8
N.
James
and
M.
Menzies
, “
Cluster-based dual evolution for multivariate time series: Analyzing COVID-19
,”
Chaos
30
,
061108
(
2020
).
9
J.
Coleman
, see https://thehill.com/homenews/state-watch/506117-california-tells-six-additional-counties-to-close-indoor-businesses-all for “California Tells Six Additional Counties to Close Indoor Businesses, All Bars,” The Hill, July 6, 2020.
10
D.
Andone
,
L.
Benson
, and
A.
Vera
, see https://edition.cnn.com/2020/04/24/us/georgia-coronavirus-reopening-businesses-friday/index.html for “Georgia Business Owners Are Conflicted as the State Reopens Hair Salons, Gyms and Bowling Alleys,” CNN, April 25, 2020.
11
N.
James
and
M.
Menzies
, “
Association between COVID-19 cases and international equity indices
,”
Physica D
417
,
132809
(
2021
).
12
D.
Zhang
,
M.
Hu
, and
Q.
Ji
, “
Financial markets under the global pandemic of COVID-19
,”
Finance Res. Lett.
36
,
101528
(
2020
).
13
Q.
He
,
J.
Liu
,
S.
Wang
, and
J.
Yu
, “
The impact of COVID-19 on stock markets
,”
Econ. Polit. Stud.
8
,
275
288
(
2020
).
14
A.
Zaremba
,
R.
Kizys
,
D. Y.
Aharon
, and
E.
Demir
, “
Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe
,”
Finance Res. Lett.
35
,
101597
(
2020
).
15
E.
Mnif
,
A.
Jarboui
, and
K.
Mouakhar
, “
How the cryptocurrency market has performed during COVID 19? A multifractal analysis
,”
Finance Res. Lett.
36
,
101647
(
2020
).
16
M.
Akhtaruzzaman
,
S.
Boubaker
, and
A.
Sensoy
, “
Financial contagion during COVID-19 crisis
,”
Finance Res. Lett.
38
,
101604
(
2020
).
17
D. I.
Okorie
and
B.
Lin
, “
Stock markets and the COVID-19 fractal contagion effects
,”
Finance Res. Lett.
38
,
101640
(
2021
).
18
S.
Lahmiri
and
S.
Bekiros
, “
The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets
,”
Chaos, Solitons Fractals
138
,
109936
(
2020
).
19
N.
James
, “
Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19
,”
Physica A
570
,
125831
(
2021
).
20
J.
Chu
,
S.
Nadarajah
, and
S.
Chan
, “
Statistical analysis of the exchange rate of Bitcoin
,”
PLoS One
10
,
e0133678
(
2015
).
21
S.
Lahmiri
and
S.
Bekiros
, “
Chaos, randomness and multi-fractality in Bitcoin market
,”
Chaos, Solitons Fractals
106
,
28
34
(
2018
).
22
N.
James
,
M.
Menzies
, and
J.
Chan
, “
Changes to the extreme and erratic behaviour of cryptocurrencies during COVID-19
,”
Physica A
565
,
125581
(
2021
).
23
D.
Kondor
,
M.
Pósfai
,
I.
Csabai
, and
G.
Vattay
, “
Do the rich get richer? An empirical analysis of the Bitcoin transaction network
,”
PLoS One
9
,
e86197
(
2014
).
24
A. F.
Bariviera
,
M. J.
Basgall
,
W.
Hasperué
, and
M.
Naiouf
, “
Some stylized facts of the Bitcoin market
,”
Physica A
484
,
82
90
(
2017
).
25
J.
Alvarez-Ramirez
,
E.
Rodriguez
, and
C.
Ibarra-Valdez
, “
Long-range correlations and asymmetry in the Bitcoin market
,”
Physica A
492
,
948
955
(
2018
).
26
D.
Stosic
,
D.
Stosic
,
T. B.
Ludermir
, and
T.
Stosic
, “
Multifractal behavior of price and volume changes in the cryptocurrency market
,”
Physica A
520
,
54
61
(
2019
).
27
D.
Stosic
,
D.
Stosic
,
T. B.
Ludermir
, and
T.
Stosic
, “
Exploring disorder and complexity in the cryptocurrency space
,”
Physica A
525
,
548
556
(
2019
).
28
S. A.
Manavi
,
G.
Jafari
,
S.
Rouhani
, and
M.
Ausloos
, “
Demythifying the belief in cryptocurrencies decentralized aspects. A study of cryptocurrencies time cross-correlations with common currencies, commodities and financial indices
,”
Physica A
556
,
124759
(
2020
).
29
S.
Drożdż
,
F.
Grümmer
,
F.
Ruf
, and
J.
Speth
, “
Towards identifying the world stock market cross-correlations: DAX versus Dow Jones
,”
Physica A
294
,
226
234
(
2001
).
30
S.
Drożdż
,
R.
Gębarowski
,
L.
Minati
,
P.
Oświęcimka
, and
M.
Wątorek
, “
Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects
,”
Chaos
28
,
071101
(
2018
).
31
S.
Drożdż
,
L.
Minati
,
P.
Oświęcimka
,
M.
Stanuszek
, and
M.
Wątorek
, “
Signatures of the crypto-currency market decoupling from the Forex
,”
Future Internet
11
,
154
(
2019
).
32
S.
Drożdż
,
L.
Minati
,
P.
Oświęcimka
,
M.
Stanuszek
, and
M.
Wątorek
, “
Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market
,”
Chaos
30
,
023122
(
2020
).
33
S.
Drożdż
,
J.
Kwapień
,
P.
Oświęcimka
,
T.
Stanisz
, and
M.
Wątorek
, “
Complexity in economic and social systems: Cryptocurrency market at around COVID-19
,”
Entropy
22
,
1043
(
2020
).
34
C.
Cot
,
G.
Cacciapaglia
, and
F.
Sannino
, “
Mining Google and Apple mobility data: Temporal anatomy for COVID-19 social distancing
,”
Sci. Rep.
11
,
4150
(
2021
).
35
S.
Praharaj
,
D.
King
,
C.
Pettit
, and
E.
Wentz
, “
Using aggregated mobility data to measure the effect of COVID-19 policies on mobility changes in Sydney, London, Phoenix, and Pune
,”
Transp. Find.
(published online
2020
).
36
J.
Kurita
,
Y.
Sugishita
,
T.
Sugawara
, and
Y.
Ohkusa
, “
Evaluating Apple Inc mobility trend data related to the COVID-19 outbreak in Japan: Statistical analysis
,”
JMIR Public Health Surveill.
7
,
e20335
(
2021
).
37
S.
Funk
,
A.
Camacho
,
A. J.
Kucharski
,
R. M.
Eggo
, and
W. J.
Edmunds
, “
Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
,”
Epidemics
22
,
56
61
(
2018
).
38
A.
Mhlanga
, “
Dynamical analysis and control strategies in modelling Ebola virus disease
,”
Adv. Differ. Equ.
2019
,
458
.
39
S. K.
Biswas
,
U.
Ghosh
, and
S.
Sarkar
, “
Mathematical model of Zika virus dynamics with vector control and sensitivity analysis
,”
Infect. Dis. Modell.
5
,
23
41
(
2020
).
40
R. E.
Morrison
and
A.
Cunha
, “
Embedded model discrepancy: A case study of Zika modeling
,”
Chaos
30
,
051103
(
2020
).
41
S. J.
Weinstein
,
M. S.
Holland
,
K. E.
Rogers
, and
N. S.
Barlow
, “
Analytic solution of the SEIR epidemic model via asymptotic approximant
,”
Physica D
411
,
132633
(
2020
).
42
C.
Vyasarayani
and
A.
Chatterjee
, “
New approximations, and policy implications, from a delayed dynamic model of a fast pandemic
,”
Physica D
414
,
132701
(
2020
).
43
K. Y.
Ng
and
M. M.
Gui
, “
COVID-19: Development of a robust mathematical model and simulation package with consideration for ageing population and time delay for control action and resusceptibility
,”
Physica D
411
,
132599
(
2020
).
44
A. G.
Neves
and
G.
Guerrero
, “
Predicting the evolution of the COVID-19 epidemic with the a-SIR model: Lombardy, Italy and São Paulo state, Brazil
,”
Physica D
413
,
132693
(
2020
).
45
A.
Comunian
,
R.
Gaburro
, and
M.
Giudici
, “
Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic
,”
Physica D
413
,
132674
(
2020
).
46
M.
Cadoni
and
G.
Gaeta
, “
Size and timescale of epidemics in the SIR framework
,”
Physica D
411
,
132626
(
2020
).
47
N. S.
Barlow
and
S. J.
Weinstein
, “
Accurate closed-form solution of the SIR epidemic model
,”
Physica D
408
,
132540
(
2020
).
48
A.
Ballesteros
,
A.
Blasco
, and
I.
Gutierrez-Sagredo
, “
Hamiltonian structure of compartmental epidemiological models
,”
Physica D
413
,
132656
(
2020
).
49
N. M.
Gatto
and
H.
Schellhorn
, “
Optimal control of the SIR model in the presence of transmission and treatment uncertainty
,”
Math. Biosci.
333
,
108539
(
2021
).
50
C.
Manchein
,
E. L.
Brugnago
,
R. M.
da Silva
,
C. F. O.
Mendes
, and
M. W.
Beims
, “
Strong correlations between power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine strategies
,”
Chaos
30
,
041102
(
2020
).
51
B.
Blasius
, “
Power-law distribution in the number of confirmed COVID-19 cases
,”
Chaos
30
,
093123
(
2020
).
52
B. K.
Beare
and
A. A.
Toda
, “
On the emergence of a power law in the distribution of COVID-19 cases
,”
Physica D
412
,
132649
(
2020
).
53
R. M.
da Silva
,
C. F. O.
Mendes
, and
C.
Manchein
, “
Scrutinizing the heterogeneous spreading of COVID-19 outbreak in large territorial countries
,”
Phys. Biol.
18
,
025002
(
2021
).
54
N.
James
,
M.
Menzies
,
L.
Azizi
, and
J.
Chan
, “
Novel semi-metrics for multivariate change point analysis and anomaly detection
,”
Physica D
412
,
132636
(
2020
).
55
K.
Shang
,
B.
Yang
,
J. M.
Moore
,
Q.
Ji
, and
M.
Small
, “
Growing networks with communities: A distributive link model
,”
Chaos
30
,
041101
(
2020
).
56
A.
Karaivanov
, “
A social network model of COVID-19
,”
PLoS One
15
,
e0240878
(
2020
).
57
J.
Ge
,
D.
He
,
Z.
Lin
,
H.
Zhu
, and
Z.
Zhuang
, “
Four-tier response system and spatial propagation of COVID-19 in China by a network model
,”
Math. Biosci.
330
,
108484
(
2020
).
58
L.
Xue
,
S.
Jing
,
J. C.
Miller
,
W.
Sun
,
H.
Li
,
J. G.
Estrada-Franco
,
J. M.
Hyman
, and
H.
Zhu
, “
A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy
,”
Math. Biosci.
326
,
108391
(
2020
).
59
F.
Saldaña
,
H.
Flores-Arguedas
,
J. A.
Camacho-Gutiérrez
, and
I.
Barradas
, “
Modeling the transmission dynamics and the impact of the control interventions for the COVID-19 epidemic outbreak
,”
Math. Biosci. Eng.
17
,
4165
4183
(
2020
).
60
A.
Danchin
and
G.
Turinici
, “
Immunity after COVID-19: Protection or sensitization?
,”
Math. Biosci.
331
,
108499
(
2021
).
61
M.
Perc
,
N. G.
Miksić
,
M.
Slavinec
, and
A.
Stožer
, “
Forecasting COVID-19
,”
Front. Phys.
8
,
127
(
2020
).
62
D.
Manevski
,
N. R.
Gorenjec
,
N.
Kejžar
, and
R.
Blagus
, “
Modeling COVID-19 pandemic using Bayesian analysis with application to Slovene data
,”
Math. Biosci.
329
,
108466
(
2020
).
63
J. A. T.
Machado
and
A. M.
Lopes
, “
Rare and extreme events: The case of COVID-19 pandemic
,”
Nonlinear Dyn.
100
,
2953
2972
(
2020
).
64
N.
James
,
M.
Menzies
, and
P.
Radchenko
, “
COVID-19 second wave mortality in Europe and the United States
,”
Chaos
31
,
031105
(
2021
).
65
C. N.
Ngonghala
,
E. A.
Iboi
, and
A. B.
Gumel
, “
Could masks curtail the post-lockdown resurgence of COVID-19 in the US?
,”
Math. Biosci.
329
,
108452
(
2020
).
66
J.
Cavataio
and
S.
Schnell
, “
Interpreting SARS-CoV-2 seroprevalence, deaths, and fatality rate—Making a case for standardized reporting to improve communication
,”
Math. Biosci.
333
,
108545
(
2021
).
67
L. Ó
Náraigh
and
Á.
Byrne
, “
Piecewise-constant optimal control strategies for controlling the outbreak of COVID-19 in the Irish population
,”
Math. Biosci.
330
,
108496
(
2020
).
68
D. H.
Glass
, “
European and US lockdowns and second waves during the COVID-19 pandemic
,”
Math. Biosci.
330
,
108472
(
2020
).
69
N.
James
and
M.
Menzies
, “
Trends in COVID-19 prevalence and mortality: A year in review
,”
Physica D
425
,
132968
(
2021
).
70
See https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?year_high_desc=true for “GDP (Current US$),” The World Bank, December 31, 2020.
71
M.
Iati
et al., see https://www.washingtonpost.com/nation/2020/05/19/coronavirus-update-us/ for “All 50 U.S. States Have Taken Steps Toward Reopening in Time for Memorial Day Weekend,” The Washington Post, May 20, 2020.
72
N.
James
and
M.
Menzies
, “
COVID-19 in the United States: Trajectories and second surge behavior
,”
Chaos
30
,
091102
(
2020
).
73
P.
Menon
and
S.
Paul
, see https://www.reuters.com/article/idUSKBN211020 for “New Zealand, Australia Tighten Lockdown to Combat Coronavirus,” Reuters, March 14, 2020.
74
J.
Pearl
,
Causality
(
Cambridge University Press
,
2009
).
75
C.
Appel
et al. (
2021
). “Our World in Data,”
GitHub
. https://github.com/owid/covid-19-data/tree/master/public/data; accessed March 30, 2021.
76
S. A.
Lauer
et al., “
The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application
,”
Ann. Intern. Med.
172
,
577
582
(
2020
).
You do not currently have access to this content.