Multistability in the intermittent generalized synchronization regime in unidirectionally coupled chaotic systems has been found. To study such a phenomenon, the method for revealing the existence of multistable states in interacting systems being the modification of an auxiliary system approach has been proposed. The efficiency of the method has been testified using the examples of unidirectionally coupled logistic maps and Rössler systems being in the intermittent generalized synchronization regime. The quantitative characteristic of multistability has been introduced into consideration.

1.
V. S.
Anishchenko
,
V.
Astakhov
,
A.
Neiman
,
T. E.
Vadivasova
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Developments
(
Springer-Verlag
,
Heidelberg
,
2001
).
2.
A. S.
Pikovsky
,
M. G.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
).
3.
S.
Boccaletti
,
A.
Pisarchik
,
C. I.
Genio del
, and
A.
Amann
,
Synchronization: From Coupled Systems to Complex Networks
(
Cambridge University Press
,
2018
).
4.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
824
(
1990
).
5.
V. S.
Anishchenko
,
T. E.
Vadivasova
,
D. E.
Postnov
, and
M. A.
Safonova
, “
Synchronization of chaos
,”
Int. J. Bifurcation Chaos
2
,
633
644
(
1992
).
6.
A. S.
Pikovsky
,
M. G.
Rosenblum
,
G. V.
Osipov
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators by external driving
,”
Physica D
104
,
219
238
(
1997
).
7.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
From phase to lag synchronization in coupled chaotic oscillators
,”
Phys. Rev. Lett.
78
,
4193
4196
(
1997
).
8.
V. S.
Anishchenko
,
T. E.
Vadivasova
, and
G. I.
Strelkova
, “
Instantaneous phase method in studying chaotic and stochastic oscillations and its limitations
,”
Fluct. Noise Lett.
4
,
L219
L229
(
2004
).
9.
N.
Rulkov
,
M. M.
Sushchik
,
L. S.
Tsimring
, and
H. D. I.
Abarbanel
, “
Generalized synchronization of chaos in directionally coupled chaotic systems
,”
Phys. Rev. E
51
,
980
994
(
1995
).
10.
K.
Pyragas
, “
Weak and strong synchronization of chaos
,”
Phys. Rev. E
54
,
R4508
R4511
(
1996
).
11.
P.
Parmananda
, “
Generalized synchronization of spatiotemporal chemical chaos
,”
Phys. Rev. E
56
,
1595
1598
(
1997
).
12.
J.
Terry
and
G.
VanWiggeren
, “
Chaotic communication using generalized synchronization
,”
Chaos, Solitons Fractals
12
,
145
152
(
2001
).
13.
A.
Uchida
,
K.
Higa
,
T.
Shiba
,
S.
Yoshimori
,
F.
Kuwashima
, and
H.
Iwasawa
, “
Generalized synchronization of chaos in He-Ne lasers
,”
Phys. Rev. E
68
,
016215
(
2003
).
14.
E. A.
Rogers
,
R.
Kalra
,
R. D.
Schroll
,
A.
Uchida
,
D. P.
Lathrop
, and
R.
Roy
, “
Generalized synchronization of spatiotemporal chaos in a liquid crystal spatial light modulator
,”
Phys. Rev. Lett.
93
,
084101
(
2004
).
15.
B. S.
Dmitriev
,
A. E.
Hramov
,
A. A.
Koronovskii
,
A. V.
Starodubov
,
D. I.
Trubetskov
, and
Y. D.
Zharkov
, “
First experimental observation of generalized synchronization phenomena in microwave oscillators
,”
Phys. Rev. Lett.
102
,
074101
(
2009
).
16.
O. I.
Moskalenko
,
A. A.
Koronovskii
, and
A. E.
Hramov
, “
Generalized synchronization of chaos for secure communication: Remarkable stability to noise
,”
Phys. Lett. A
374
,
2925
2931
(
2010
).
17.
O. I.
Moskalenko
,
A. A.
Koronovskii
,
A. E.
Hramov
, and
S.
Boccaletti
, “
Generalized synchronization in mutually coupled oscillators and complex networks
,”
Phys. Rev. E
86
,
036216
(
2012
).
18.
K.
Pyragas
, “
Properties of generalized synchronization of chaos
,”
Nonlinear Anal.: Model. Control
3
,
101
129
(
1998
).
19.
A. E.
Hramov
and
A. A.
Koronovskii
, “
Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators
,”
Europhys. Lett.
70
,
169
175
(
2005
).
20.
A. A.
Koronovskii
,
O. I.
Moskalenko
,
A. A.
Pivovarov
, and
E. V.
Evstifeev
, “
Intermittent route to generalized synchronization in bidirectionally coupled chaotic oscillators
,”
Chaos
30
,
083133
(
2020
).
21.
A. A.
Koronovskii
,
O. I.
Moskalenko
,
A. A.
Pivovarov
,
V. A.
Khanadeev
,
A. E.
Hramov
, and
A. N.
Pisarchik
, “
Jump intermittency as a second type of transition to and from generalized synchronization
,”
Phys. Rev. E
102
,
012205
(
2020
).
22.
A. E.
Hramov
,
A. A.
Koronovskii
,
I. S.
Midzyanovskaya
,
E.
Sitnikova
, and
C. M.
Rijn
, “
On-off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy
,”
Chaos
16
,
043111
(
2006
).
23.
H. D. I.
Abarbanel
,
N.
Rulkov
, and
M. M.
Sushchik
, “
Generalized synchronization of chaos: The auxiliary system approach
,”
Phys. Rev. E
53
,
4528
4535
(
1996
).
24.
O.
Moskalenko
,
A.
Koronovskii
, and
A.
Hramov
, “
Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks
,”
Phys. Rev. E
87
,
064901
(
2013
).
25.
F. T.
Arecchi
,
R.
Badii
, and
A.
Politi
, “
Generalized multistability and noise-induced jumps in a nonlinear dynamical system
,”
Phys. Rev. A
32
,
402
408
(
1985
).
26.
F. T.
Arecchi
,
R.
Meucci
,
G.
Puccioni
, and
J. R.
Tredicce
, “
Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser
,”
Phys. Rev. Lett.
49
,
1217
1220
(
1982
).
27.
A.
Pisarchik
and
U.
Feudel
, “
Control of multistability
,”
Phys. Rep.
540
,
167
218
(
2014
).
28.
A. A.
Koronovskii
,
O. I.
Moskalenko
, and
A. E.
Hramov
, “
Nearest neighbors, phase tubes, and generalized synchronization
,”
Phys. Rev. E
84
,
037201
(
2011
).
29.
K.
Pyragas
, “
Conditional Lyapunov exponents from time series
,”
Phys. Rev. E
56
,
5183
5188
(
1997
).
30.
A. E.
Hramov
and
A. A.
Koronovskii
, “
Generalized synchronization: A modified system approach
,”
Phys. Rev. E
71
,
067201
(
2005
).
31.
A. E.
Hramov
,
A. A.
Koronovskii
, and
O. I.
Moskalenko
, “
Generalized synchronization onset
,”
Europhys. Lett.
72
,
901
907
(
2005
).
32.
M. S.
Patel
,
U.
Patel
,
A.
Sen
,
G. C.
Sethia
,
C.
Hens
,
S. K.
Dana
,
U.
Feudel
,
K.
Showalter
,
C. N.
Ngonghala
, and
R. E.
Amritkar
, “
Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators
,”
Phys. Rev. E
89
,
022918
(
2014
).
33.
A. A.
Koronovskii
,
O. I.
Moskalenko
,
S. A.
Shurygina
, and
A. E.
Hramov
, “
Generalized synchronization in discrete maps. New point of view on weak and strong synchronization
,”
Chaos, Solitons Fractals
46
,
12
18
(
2013
).
34.
R.
McAllister
,
A.
Uchida
,
R.
Meucci
, and
R.
Roy
, “
Generalized synchronization of chaos: Experiments on a two-mode microchip laser with optoelectronic feedback
,”
Phys. D: Nonlinear Phenom.
195
,
244
262
(
2004
).
35.
A. E.
Hramov
,
A. A.
Koronovskii
,
V. A.
Maximenko
, and
O. I.
Moskalenko
, “
Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices
,”
Phys. Plasmas
19
,
082302
(
2012
).
You do not currently have access to this content.