Slow and fast dynamics of unsynchronized coupled nonlinear oscillators is hard to extract. In this paper, we use the concept of perpetual points to explain the short duration ordering in the unsynchronized motions of the phase oscillators. We show that the coupled unsynchronized system has ordered slow and fast dynamics when it passes through the perpetual point. Our simulations of single, two, three, and 50 coupled Kuramoto oscillators show the generic nature of perpetual points in the identification of slow and fast oscillations. We also exhibit that short-time synchronization of complex networks can be understood with the help of perpetual motion of the network.
REFERENCES
1.
2.
S.
Assenza
, R.
Gutiérrez
, J.
Gómez-Gardenes
, V.
Latora
, and S.
Boccaletti
, Sci. Rep.
1
, 440
(2011
). 3.
K.
Kaneko
and I.
Tsuda
, Complex Systems: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences
(Springer Science & Business Media
, 2011
).4.
S. H.
Strogatz
, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(Westview Press
, 2015
).5.
G.
Buzsáki
and A.
Draguhn
, Science
304
, 1926
(2004
). 6.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Science
(Cambridge University Press
, Cambridge
, 2001
).7.
8.
Y.
Kuramoto
, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics Vol. 39, edited by H. Arakai (Springer, New York, 1975), p. 420.9.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence
(Springer-Verlag
, New York
, 1984
).10.
F.
Dörfler
and F.
Bullo
, Automatica
50
, 1539
(2014
). 11.
B.
Pietras
and A.
Daffertshofer
, Phys. Rep.
819
, 1
(2019
). 12.
D. M.
Abrams
and S. H.
Strogatz
, Phys. Rev. Lett.
9
, 174102
(2004
). 13.
M. R.
Tice
, Z. B.
Kramer
, and M. C.
Elie
, “Unsynchronized cardioversion (defibrillation),” in Atlas of Emergency Medicine Procedures, edited by L. Ganti (Springer, New York, 2016).14.
D.
Pazó
, M. A.
Zaks
, and J.
Kurths
, Chaos
13
, 309
(2003
). 15.
H.
Xu
and B. F.
Bai
, Phys. Fluids
32
, 127115
(2020
). 16.
M.
Levant
and V.
Steinberg
, Phys. Rev. Lett.
112
, 138106
(2014
). 17.
Y. P.
Wang
and W. H.
Liao
, Earthq. Eng. Struct. Dyn.
29
, 297
(2000
). 18.
N.
Leng
, L. F.
Chu
, C.
Barry
, Y.
Li
, J.
Choi
, X.
Li
, P.
Jiang
, R. M.
Stewart
, J. A.
Thomson
, and C.
Kendziorski
, Nat. Methods
12
, 947
(2015
). 19.
M.
Gerster
, R.
Berner
, J.
Sawicki
, A.
Zakharova
, A.
Škoch
, J.
Hlinka
, K.
Lehnertz
, and E.
Schöll
, Chaos
30
, 123130
(2020
). 20.
L. B.
Good
, S.
Sabesan
, S. T.
Marsh
, K.
Tsakalis
, D.
Treiman
, and L.
Iasemidis
, Int. J. Neural Syst.
19
, 173
–196
(2009
). 21.
L.
Iasemidis
, S.
Sabesan
, N.
Chakravarthy
, A.
Prasad
, and K.
Tsakalis
, “Brain dynamics and modeling in epilepsy: Prediction and control studies,” in Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems, edited by S. K. Dana, P. K. Roy, and J. Kurths (Springer, Dordrecht, 2009).22.
C. K.
Jones
and A. I.
Khibnik
, Multiple-Time-Scale Dynamical Systems
(Springer Science & Business Media
, New York
, 2012
).23.
R.
Bertram
and J. E.
Rubin
, Math. Biosci.
287
, 105
(2017
). 24.
25.
S.-Y.
Ha
and M.
Slemrod
, J. Differ. Equ.
251
, 2685
(2011
). 26.
S. H.
Strogatz
, Physica D
143
, 1
(2000
). 27.
F. A.
Rodrigues
, T. K. D.
Peron
, P.
Ji
, and J.
Kurths
, Phys. Rep.
610
, 1
(2016
). 28.
A. T.
Winfree
, J. Theor. Biol.
16
, 15
(1967
). 29.
E.
Ott
and T. M.
Antonsen
, Chaos
18
, 037113
(2008
). 30.
E.
Ott
and T. M.
Antonsen
, Chaos
19
, 023117
(2009
). 31.
A.
Prasad
, Int. J. Bifurcation Chaos
25
, 1530005
(2015
). 32.
D.
Dudkowski
, A.
Prasad
, and T.
Kapitaniak
, Phys. Lett. A
379
, 2591
(2015
). 33.
D.
Dudkowski
, S.
Jafari
, T.
Kapitaniak
, N. V.
Kuznetsov
, G. A.
Leonov
, and A.
Prasad
, Phys. Rep.
637
, 1
(2016
). 34.
D.
Dudkowski
, A.
Prasad
, and T.
Kapitaniak
, Int. J. Bifurcation Chaos
27
, 1750063
(2017
). 35.
P.
Faradja
and G.
Qi
, Chaos, Solitons Fractals
132
, 109606
(2020
). 36.
F.
Nazarimehr
, B.
Saedi
, S.
Jafari
, and J. C.
Sprott
, Int. J. Bifurcation Chaos
27
, 1750037
(2017
). 37.
F.
Georgiades
, “Theorem and observation about the nature of perpetual points,” in IUTAM Symposium on Exploiting Nonlinear Dynamics for Engineering Systems (Springer, 2019).38.
P.
Brzeski
and L. N.
Virgin
, Nonlinear Dyn.
90
, 2917
(2017
). 39.
P.
Brzeski
and L. N.
Virgin
, Mech. Syst. Signal Process.
108
, 115
(2018
). 40.
F.
Georgiades
, “Perpetual points in natural mechanical systems with viscous damping: A theorem and a remark
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0
, 1–9
(2020
). 41.
A.
Bayani
, K.
Rajagopal
, A. J. M.
Khalaf
, S.
Jafari
, G. D.
Leutcho
, and J.
Kengne
, Phys. Lett. A
383
, 1450
(2019
). 42.
S.
Jafari
, F.
Nazarimehr
, J. C.
Sprott
, and S. M. R. H.
Golpayegani
, Int. J. Bifurcation Chaos
25
, 1550182
(2015
). 43.
F.
Georgiades
, J. Comput. Nonlinear Dyn.
16
, 071005
(2021
). © 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.