Using the technique of Poincaré return maps, we disclose an intricate order of subsequent homoclinic bifurcations near the primary figure-8 connection of the Shilnikov saddle-focus in systems with reflection symmetry. We also reveal admissible shapes of the corresponding bifurcation curves in a parameter space. Their scalability ratio and organization are proven to be universal for such homoclinic bifurcations of higher orders. Two applications with similar dynamics due to the Shilnikov saddle-foci are used to illustrate the theory: a smooth adaptation of the Chua circuit and a 3D normal form.

1.
L. P.
Shilnikov
, “
A case of the existence of a denumerable set of periodic motions
,”
Dokl. Akad. Nauk SSSR
160
,
558
561
(
1965
).
2.
L. P.
Shilnikov
, “
The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus
,”
Sov. Math. Dokl.
8
(
1
),
54
58
(
1967
).
3.
L. P.
Shilnikov
, “
On the birth of a periodic motion from a trajectory bi-asymptotic to an equilibrium state pf the saddle type
,”
Sov. Math. Sb.
35
(
3
),
240
264
(
1968
).
4.
L. P.
Shilnikov
, “
A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type
,”
Math. USSR-Sb.
10
,
91
102
(
1970
).
5.
S. V.
Gonchenko
,
D. V.
Turaev
,
P.
Gaspard
, and
G.
Nicolis
, “
Complexity in the bifurcation structure of homoclinic loops to a saddle-focus
,”
Nonlinearity
10
,
409
(
1997
).
6.
V.
Gonchenko
and
L.
Shilnikov
, “
On bifurcations of systems with homoclinic loops to a saddle-focus with saddle index 1/2
,”
Dokl. Math.
76
,
929
933
(
2007
).
7.
R.
Barrio
,
A.
Shilnikov
, and
L.
Shilnikov
, “
Kneadings, symbolic dynamics and painting Lorenz chaos
,”
Int. J. Bifurcation Chaos
22
,
1230016
(
2012
).
8.
R.
Barrio
,
F.
Blesa
,
S.
Serrano
,
T.
Xing
, and
A. L.
Shilnikov
, “Homoclinic spirals: Theory and numerics,” in Progress and Challenges in Dynamical Systems (Springer, 2013), pp. 53–64.
9.
T.
Xing
,
R.
Barrio
, and
A. L.
Shilnikov
, “
Symbolic quest into homoclinic chaos
,”
Int. J. Bifurcation Chaos
24
,
1440004
(
2014
).
10.
K.
Pusuluri
,
A.
Pikovsky
, and
A.
Shilnikov
, “Unraveling the chaos-land and its organization in the Rabinovich system,” in Advances in Dynamics, Patterns, Cognition (Springer, 2017), pp. 41–60.
11.
E.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
12.
L.
Shilnikov
, “Bifurcation theory and the Lorenz model,” in The Hopf Bifurcation and Its Applications, Appendix to Russian ed., edited by J. Marsden and M. McCraken (Elsevier, 1980), pp. 317–335.
13.
A.
Shilnikov
, “Bifurcations and chaos in the Morioka-Shimizu model. Part I,” in Methods in Qualitative Theory and Bifurcation Theory (Elsevier, 1986), pp. 180–193 (in Russian).
14.
A. L.
Shilnikov
, “
On bifurcations of the Lorenz attractor in the Shimizu-Morioka model
,”
Physica D
62
,
338
346
(
1993
).
15.
A. L.
Shilnikov
,
L. P.
Shilnikov
, and
D. V.
Turaev
, “
Normal forms and Lorenz attractors
,”
Int. J. Bifurcation Chaos
3
,
1123
1139
(
1993
).
16.
K.
Pusuluri
and
A.
Shilnikov
, “
Homoclinic chaos and its organization in a nonlinear optics model
,”
Phys. Rev. E
98
,
040202
(
2018
).
17.
K.
Pusuluri
and
A. L.
Shilnikov
, “Symbolic representation of neuronal dynamics,” in Advances on Nonlinear Dynamics of Electronic Systems (World Scientific, 2019), pp. 97–102.
18.
K.
Pusuluri
,
H.
Ju
, and
A. L.
Shilnikov
, “Chaotic dynamics in neural systems,” in Encyclopedia of Complexity and Systems Science, edited by R. A. Meyers (Springer, Berlin, 2020), pp. 1–13.
19.
K.
Pusuluri
,
H. G. E.
Meijer
, and
A. L.
Shilnikov
, “
Homoclinic puzzles and chaos in a nonlinear laser model
,”
J. Commun. Nonlinear Sci. Numer. Simul.
93
,
105503
(
2021
).
20.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
, “
The origin and structure of the Lorenz attractor
,”
Sov. Phys. Dokl.
22
,
253
255
(
1977
).
21.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
, “
On the origin and structure of the Lorenz attractor
,”
Akad. Nauk. SSSR Dokl.
234
,
336
339
(
1977
).
22.
V. S.
Afraimovich
and
L. P.
Shilnikov
, “Strange attractors and quasiattractors,” in Nonlinear Dynamics and Turbulence (Pitman, 1983).
23.
L. P.
Shilnikov
and
A. L.
Shilnikov
, “
Shilnikov bifurcation
,”
Scholarpedia
2
,
1891
(
2007
); see http://www.scholarpedia.org/article/Shilnikov_bifurcation, revision #153014.
24.
L. P.
Shilnikov
, “
A certain new type of bifurcation of multidimensional dynamic systems
,”
Dokl. Akad. Nauk SSSR
189
,
59
62
(
1969
).
25.
V. S.
Afraimovich
,
S. V.
Gonchenko
,
L. M.
Lerman
,
A. L.
Shilnikov
, and
D. V.
Turaev
, “
Scientific heritage of L.P. Shilnikov
,”
Regul. Chaotic Dyn.
19
,
435
460
(
2014
).
26.
L. P.
Shilnikov
,
A. L.
Shilnikov
,
D. V.
Turaev
, and
L. O.
Chua
, Methods of Qualitative Theory in Nonlinear Dynamics, World Scientific Series on Nonlinear Science, Series A (World Scientific, 1998, 2001), Vol. 5, Parts I and II.
27.
V. I.
Arnold
,
V.
Afrajmovich
,
Y. S.
Il’yashenko
, and
L. P.
Shilnikov
, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Springer Science & Business Media, 2013), Vol. 5.
28.
P.
Gaspard
, “
Generation of a countable set of homoclinic flows through bifurcation
,”
Phys. Lett. A
97
,
1
4
(
1983
).
29.
L.
Belyakov
, “
Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero
,”
Math. Notes
36
,
838
843
(
1984
).
30.
I.
Ovsyannikov
and
L. P.
Shilnikov
, “
On systems with a saddle-focus homoclinic curve
,”
Mat. Sb.
172
,
552
570
(
1986
).
31.
I.
Ovsyannikov
and
L. P.
Shilnikov
, “
Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos
,”
Math. USSR-Sb.
73
,
415
(
1992
).
32.
A.
Arneodo
,
P.
Coullet
, and
C.
Tresser
, “
Possible new strange attractors with spiral structure
,”
Commun. Math. Phys.
79
,
573
579
(
1981
).
33.
P.
Gaspard
and
G.
Nicolis
, “
What can we learn from homoclinic orbits in chaotic dynamics?
,”
J. Stat. Phys.
31
,
499
518
(
1983
).
34.
P.
Gaspard
,
R.
Kapral
, and
G.
Nicolis
, “
Bifurcation phenomena near homoclinic systems: A two-parameter analysis
,”
J. Stat. Phys.
35
,
697
727
(
1984
).
35.
R. O.
Medrano-T.
,
M. S.
Baptista
, and
I. L.
Caldas
, “
Basic structures of the Shilnikov homoclinic bifurcation scenario
,”
Chaos
15
,
033112
(
2005
).
36.
A.
Fowler
and
C.
Sparrow
, “
Bifocal homoclinic orbits in four dimensions
,”
Nonlinearity
4
,
1159
(
1991
).
37.
A.
Arneodo
,
F.
Argoul
,
J.
Elezgaray
, and
P.
Richetti
, “
Homoclinic chaos in chemical systems
,”
Physica D
62
,
134
169
(
1993
).
38.
V. V.
Bykov
, Orbit Structure in a Neighborhood of a Separatrix Cycle Containing Two Saddle-Foci, American Mathematical Society Translations: Series 2 (American Mathematical Society, 2000), Vol. 20, pp. 87–95.
39.
U.
Feudel
,
A.
Neiman
,
X.
Pei
,
W.
Wojtenek
,
H.
Braun
,
M.
Huber
, and
F.
Moss
, “
Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons
,”
Chaos
10
,
231
239
(
2000
).
40.
S.
Nicolay
,
F.
Argoul
,
M.
Touchon
,
Y.
d’Aubenton Carafa
,
C.
Thermes
, and
A.
Arnéodo
, “
Low frequency rhythms in human DNA sequences: A key to the organization of gene location and orientation?
,”
Phys. Rev. Lett.
93
,
108101
(
2004
).
41.
R.
Barrio
,
F.
Blesa
,
S.
Serrano
, and
A. L.
Shilnikov
, “
Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci
,”
Phys. Rev. E
84
,
035201
(
2011
).
42.
M. T.
Koper
,
P.
Gaspard
, and
J.
Sluyters
, “
Mixed–mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator
,”
J. Chem. Phys.
97
,
8250
8260
(
1992
).
43.
M.
Bassett
and
J.
Hudson
, “
Shilnikov chaos during copper electrodissolution
,”
J. Phys. Chem.
92
,
6963
6966
(
1988
).
44.
C.
Toniolo
,
G.
Russo
,
S.
Residori
, and
C.
Tresser
, “
A phenomenological approach to normal form modeling: A case study in laser induced nematodynamics
,”
Int. J. Bifurcation Chaos
15
,
3547
3566
(
2005
).
45.
J. M.
Cortes
,
M.
Desroches
,
S.
Rodrigues
,
R.
Veltz
,
M. A.
Muñoz
, and
T. J.
Sejnowski
, “
Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
16610
16615
(
2013
).
46.
S.
Malykh
,
Y.
Bakhanova
,
A.
Kazakov
,
K.
Pusuluri
, and
A. L.
Shilnikov
, “
Homoclinic chaos in the Rössler model
,”
Chaos
30
,
113126
(
2020
).
47.
W.
Barnett
,
G.
Bella
,
T.
Ghosh
,
P.
Mattana
, and
B.
Venturi
, “Shilnikov chaos, low interest rates, and new keynesian macroeconomics,” MPRA Paper No. 98417 (2020); see https://mpra.ub.uni-muenchen.de/98417/.
48.
S. V.
Gonchenko
,
L. P.
Shil’nikov
, and
D. V.
Turaev
, “
Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits
,”
Chaos
6
,
15
31
(
1996
).
49.
S.
Gonchenko
,
L. P.
Shil’nikov
, and
D.
Turaev
, “
Quasiattractors and homoclinic tangencies
,”
Comput. Math. Appl.
34
,
195
227
(
1997
).
50.
D.
Turaev
and
L. P.
Shilnikov
, “
An example of a wild strange attractor
,”
Sb. Math.
189
(
2
),
291
314
(
1998
).
51.
D.
Turaev
and
L.
Shil’nikov
, “
Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors
,”
Dokl. Math.
77
,
17
(
2008
).
52.
T.
Matsumoto
,
S.
Tanaka
, and
L.
Chua
, “
Simplest chaotic non-autonomous circuit
,”
Phys. Rev. A
30
,
1155
1159
(
1984
).
53.
G.
Ramirez-Avila
and
J.
Gallas
, “
How similar is the performance of the cubic and the piecewise-linear circuits of Chua?
,”
Phys. Lett. A
375
,
143
148
(
2010
).
54.
A.
Tsuneda
, “
A gallery of attractors from smooth Chua’s equation
,”
Int. J. Bifurcation Chaos
15
,
1
49
(
2005
).
55.
A. I.
Khibnik
,
D.
Roose
, and
L. O.
Chua
, “
On periodic orbits and homoclinic bifurcations in Chua’s circuit with a smooth nonlinearity
,”
Int. J. Bifurcation Chaos
3
(02),
363
384
(
1993
).
56.
V. V.
Bykov
, “
Bifurcations leading to chaos in Chua’s circuit
,”
Int. J. Bifurcation Chaos
8
,
685
699
(
1998
).
57.
P.
Coullet
,
C.
Tresser
, and
A.
Arneodo
, “
Transition to stochasticity for a class of forced oscillators
,”
Phys. Lett. A
72
,
268
270
(
1979
).
58.
A.
Arneodo
,
P.
Coullet
, and
C.
Tresser
, “
Occurrence of strange attractors in three-dimensional Volterra equations
,”
Phys. Lett. A
79
,
259
263
(
1980
).
59.
A.
Arneodo
,
P.
Coullet
, and
C.
Tresser
, “
Oscillators with chaotic behavior: An illustration of a theorem by Shilnikov
,”
J. Stat. Phys.
27
,
171
182
(
1982
).
60.
A.
Arneodo
,
P.
Coullet
,
E.
Spiegel
, and
C.
Tresser
, “
Asymptotic chaos
,”
Physica D
14
,
327
347
(
1985
).
61.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
62.
V. V.
Bykov
, “
On systems with separatrix contour containing two saddle-foci
,”
J. Math. Sci.
95
,
2513
2522
(
1999
).
63.
V. V.
Bykov
, “On the structure of bifurcations sets of dynamical systems that are systems with a separatrix contour containing saddle-focus,” in Methods of Qualitative Theory of Differential Equations (Gorky University, Russia, 1980), pp. 44–72 (in Russian).
64.
A.
Algaba
,
M.
Merino
,
F.
Fernández-Sánchez
, and
A. J.
Rodríguez-Luis
, “
Open-to-closed curves of saddle-node bifurcations of periodic orbits near a nontransversal T-point in Chua’s equation
,”
Int. J. Bifurcation Chaos
16
,
2637
2647
(
2006
).
65.
A.
Lempel
and
J.
Ziv
, “
On the complexity of finite sequences
,”
IEEE Trans. Inf. Theory
22
,
75
81
(
1976
).
66.
Deterministic Chaos Prospector (DCP) toolkit: https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector.
You do not currently have access to this content.