Using the technique of Poincaré return maps, we disclose an intricate order of subsequent homoclinic bifurcations near the primary figure-8 connection of the Shilnikov saddle-focus in systems with reflection symmetry. We also reveal admissible shapes of the corresponding bifurcation curves in a parameter space. Their scalability ratio and organization are proven to be universal for such homoclinic bifurcations of higher orders. Two applications with similar dynamics due to the Shilnikov saddle-foci are used to illustrate the theory: a smooth adaptation of the Chua circuit and a 3D normal form.
REFERENCES
1.
L. P.
Shilnikov
, “A case of the existence of a denumerable set of periodic motions
,” Dokl. Akad. Nauk SSSR
160
, 558
–561
(1965
). 2.
L. P.
Shilnikov
, “The existence of a denumerable set of periodic motions in four-dimensional space in an extended neighborhood of a saddle-focus
,” Sov. Math. Dokl.
8
(1
), 54
–58
(1967
).3.
L. P.
Shilnikov
, “On the birth of a periodic motion from a trajectory bi-asymptotic to an equilibrium state pf the saddle type
,” Sov. Math. Sb.
35
(3
), 240
–264
(1968
).4.
L. P.
Shilnikov
, “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type
,” Math. USSR-Sb.
10
, 91
–102
(1970
). 5.
S. V.
Gonchenko
, D. V.
Turaev
, P.
Gaspard
, and G.
Nicolis
, “Complexity in the bifurcation structure of homoclinic loops to a saddle-focus
,” Nonlinearity
10
, 409
(1997
). 6.
V.
Gonchenko
and L.
Shilnikov
, “On bifurcations of systems with homoclinic loops to a saddle-focus with saddle index
,” Dokl. Math.
76
, 929
–933
(2007
). 7.
R.
Barrio
, A.
Shilnikov
, and L.
Shilnikov
, “Kneadings, symbolic dynamics and painting Lorenz chaos
,” Int. J. Bifurcation Chaos
22
, 1230016
(2012
). 8.
R.
Barrio
, F.
Blesa
, S.
Serrano
, T.
Xing
, and A. L.
Shilnikov
, “Homoclinic spirals: Theory and numerics,” in Progress and Challenges in Dynamical Systems (Springer, 2013), pp. 53–64.9.
T.
Xing
, R.
Barrio
, and A. L.
Shilnikov
, “Symbolic quest into homoclinic chaos
,” Int. J. Bifurcation Chaos
24
, 1440004
(2014
). 10.
K.
Pusuluri
, A.
Pikovsky
, and A.
Shilnikov
, “Unraveling the chaos-land and its organization in the Rabinovich system,” in Advances in Dynamics, Patterns, Cognition (Springer, 2017), pp. 41–60.11.
E.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
). 12.
L.
Shilnikov
, “Bifurcation theory and the Lorenz model,” in The Hopf Bifurcation and Its Applications, Appendix to Russian ed., edited by J. Marsden and M. McCraken (Elsevier, 1980), pp. 317–335.13.
A.
Shilnikov
, “Bifurcations and chaos in the Morioka-Shimizu model. Part I,” in Methods in Qualitative Theory and Bifurcation Theory (Elsevier, 1986), pp. 180–193 (in Russian).14.
A. L.
Shilnikov
, “On bifurcations of the Lorenz attractor in the Shimizu-Morioka model
,” Physica D
62
, 338
–346
(1993
). 15.
A. L.
Shilnikov
, L. P.
Shilnikov
, and D. V.
Turaev
, “Normal forms and Lorenz attractors
,” Int. J. Bifurcation Chaos
3
, 1123
–1139
(1993
). 16.
K.
Pusuluri
and A.
Shilnikov
, “Homoclinic chaos and its organization in a nonlinear optics model
,” Phys. Rev. E
98
, 040202
(2018
). 17.
K.
Pusuluri
and A. L.
Shilnikov
, “Symbolic representation of neuronal dynamics,” in Advances on Nonlinear Dynamics of Electronic Systems (World Scientific, 2019), pp. 97–102.18.
K.
Pusuluri
, H.
Ju
, and A. L.
Shilnikov
, “Chaotic dynamics in neural systems,” in Encyclopedia of Complexity and Systems Science, edited by R. A. Meyers (Springer, Berlin, 2020), pp. 1–13.19.
K.
Pusuluri
, H. G. E.
Meijer
, and A. L.
Shilnikov
, “Homoclinic puzzles and chaos in a nonlinear laser model
,” J. Commun. Nonlinear Sci. Numer. Simul.
93
, 105503
(2021
).20.
V. S.
Afraimovich
, V. V.
Bykov
, and L. P.
Shilnikov
, “The origin and structure of the Lorenz attractor
,” Sov. Phys. Dokl.
22
, 253
–255
(1977
).21.
V. S.
Afraimovich
, V. V.
Bykov
, and L. P.
Shilnikov
, “On the origin and structure of the Lorenz attractor
,” Akad. Nauk. SSSR Dokl.
234
, 336
–339
(1977
).22.
V. S.
Afraimovich
and L. P.
Shilnikov
, “Strange attractors and quasiattractors,” in Nonlinear Dynamics and Turbulence (Pitman, 1983).23.
L. P.
Shilnikov
and A. L.
Shilnikov
, “Shilnikov bifurcation
,” Scholarpedia
2
, 1891
(2007
); see http://www.scholarpedia.org/article/Shilnikov_bifurcation, revision #153014. 24.
L. P.
Shilnikov
, “A certain new type of bifurcation of multidimensional dynamic systems
,” Dokl. Akad. Nauk SSSR
189
, 59
–62
(1969
).25.
V. S.
Afraimovich
, S. V.
Gonchenko
, L. M.
Lerman
, A. L.
Shilnikov
, and D. V.
Turaev
, “Scientific heritage of L.P. Shilnikov
,” Regul. Chaotic Dyn.
19
, 435
–460
(2014
). 26.
L. P.
Shilnikov
, A. L.
Shilnikov
, D. V.
Turaev
, and L. O.
Chua
, Methods of Qualitative Theory in Nonlinear Dynamics, World Scientific Series on Nonlinear Science, Series A (World Scientific, 1998, 2001), Vol. 5, Parts I and II.27.
V. I.
Arnold
, V.
Afrajmovich
, Y. S.
Il’yashenko
, and L. P.
Shilnikov
, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Springer Science & Business Media, 2013), Vol. 5.28.
P.
Gaspard
, “Generation of a countable set of homoclinic flows through bifurcation
,” Phys. Lett. A
97
, 1
–4
(1983
). 29.
L.
Belyakov
, “Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero
,” Math. Notes
36
, 838
–843
(1984
).30.
I.
Ovsyannikov
and L. P.
Shilnikov
, “On systems with a saddle-focus homoclinic curve
,” Mat. Sb.
172
, 552
–570
(1986
).31.
I.
Ovsyannikov
and L. P.
Shilnikov
, “Systems with a homoclinic curve of multidimensional saddle-focus type, and spiral chaos
,” Math. USSR-Sb.
73
, 415
(1992
). 32.
A.
Arneodo
, P.
Coullet
, and C.
Tresser
, “Possible new strange attractors with spiral structure
,” Commun. Math. Phys.
79
, 573
–579
(1981
). 33.
P.
Gaspard
and G.
Nicolis
, “What can we learn from homoclinic orbits in chaotic dynamics?
,” J. Stat. Phys.
31
, 499
–518
(1983
). 34.
P.
Gaspard
, R.
Kapral
, and G.
Nicolis
, “Bifurcation phenomena near homoclinic systems: A two-parameter analysis
,” J. Stat. Phys.
35
, 697
–727
(1984
). 35.
R. O.
Medrano-T.
, M. S.
Baptista
, and I. L.
Caldas
, “Basic structures of the Shilnikov homoclinic bifurcation scenario
,” Chaos
15
, 033112
(2005
). 36.
A.
Fowler
and C.
Sparrow
, “Bifocal homoclinic orbits in four dimensions
,” Nonlinearity
4
, 1159
(1991
). 37.
A.
Arneodo
, F.
Argoul
, J.
Elezgaray
, and P.
Richetti
, “Homoclinic chaos in chemical systems
,” Physica D
62
, 134
–169
(1993
). 38.
V. V.
Bykov
, Orbit Structure in a Neighborhood of a Separatrix Cycle Containing Two Saddle-Foci, American Mathematical Society Translations: Series 2 (American Mathematical Society, 2000), Vol. 20, pp. 87–95.39.
U.
Feudel
, A.
Neiman
, X.
Pei
, W.
Wojtenek
, H.
Braun
, M.
Huber
, and F.
Moss
, “Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons
,” Chaos
10
, 231
–239
(2000
). 40.
S.
Nicolay
, F.
Argoul
, M.
Touchon
, Y.
d’Aubenton Carafa
, C.
Thermes
, and A.
Arnéodo
, “Low frequency rhythms in human DNA sequences: A key to the organization of gene location and orientation?
,” Phys. Rev. Lett.
93
, 108101
(2004
). 41.
R.
Barrio
, F.
Blesa
, S.
Serrano
, and A. L.
Shilnikov
, “Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci
,” Phys. Rev. E
84
, 035201
(2011
). 42.
M. T.
Koper
, P.
Gaspard
, and J.
Sluyters
, “Mixed–mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator
,” J. Chem. Phys.
97
, 8250
–8260
(1992
). 43.
M.
Bassett
and J.
Hudson
, “Shilnikov chaos during copper electrodissolution
,” J. Phys. Chem.
92
, 6963
–6966
(1988
). 44.
C.
Toniolo
, G.
Russo
, S.
Residori
, and C.
Tresser
, “A phenomenological approach to normal form modeling: A case study in laser induced nematodynamics
,” Int. J. Bifurcation Chaos
15
, 3547
–3566
(2005
). 45.
J. M.
Cortes
, M.
Desroches
, S.
Rodrigues
, R.
Veltz
, M. A.
Muñoz
, and T. J.
Sejnowski
, “Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics
,” Proc. Natl. Acad. Sci. U.S.A.
110
, 16610
–16615
(2013
). 46.
S.
Malykh
, Y.
Bakhanova
, A.
Kazakov
, K.
Pusuluri
, and A. L.
Shilnikov
, “Homoclinic chaos in the Rössler model
,” Chaos
30
, 113126
(2020
). 47.
W.
Barnett
, G.
Bella
, T.
Ghosh
, P.
Mattana
, and B.
Venturi
, “Shilnikov chaos, low interest rates, and new keynesian macroeconomics,” MPRA Paper No. 98417 (2020); see https://mpra.ub.uni-muenchen.de/98417/.48.
S. V.
Gonchenko
, L. P.
Shil’nikov
, and D. V.
Turaev
, “Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits
,” Chaos
6
, 15
–31
(1996
). 49.
S.
Gonchenko
, L. P.
Shil’nikov
, and D.
Turaev
, “Quasiattractors and homoclinic tangencies
,” Comput. Math. Appl.
34
, 195
–227
(1997
). 50.
D.
Turaev
and L. P.
Shilnikov
, “An example of a wild strange attractor
,” Sb. Math.
189
(2
), 291
–314
(1998
). 51.
D.
Turaev
and L.
Shil’nikov
, “Pseudohyperbolicity and the problem on periodic perturbations of Lorenz-type attractors
,” Dokl. Math.
77
, 17
(2008
). 52.
T.
Matsumoto
, S.
Tanaka
, and L.
Chua
, “Simplest chaotic non-autonomous circuit
,” Phys. Rev. A
30
, 1155
–1159
(1984
). 53.
G.
Ramirez-Avila
and J.
Gallas
, “How similar is the performance of the cubic and the piecewise-linear circuits of Chua?
,” Phys. Lett. A
375
, 143
–148
(2010
). 54.
A.
Tsuneda
, “A gallery of attractors from smooth Chua’s equation
,” Int. J. Bifurcation Chaos
15
, 1
–49
(2005
). 55.
A. I.
Khibnik
, D.
Roose
, and L. O.
Chua
, “On periodic orbits and homoclinic bifurcations in Chua’s circuit with a smooth nonlinearity
,” Int. J. Bifurcation Chaos
3
(02), 363
–384
(1993
).56.
V. V.
Bykov
, “Bifurcations leading to chaos in Chua’s circuit
,” Int. J. Bifurcation Chaos
8
, 685
–699
(1998
). 57.
P.
Coullet
, C.
Tresser
, and A.
Arneodo
, “Transition to stochasticity for a class of forced oscillators
,” Phys. Lett. A
72
, 268
–270
(1979
). 58.
A.
Arneodo
, P.
Coullet
, and C.
Tresser
, “Occurrence of strange attractors in three-dimensional Volterra equations
,” Phys. Lett. A
79
, 259
–263
(1980
). 59.
A.
Arneodo
, P.
Coullet
, and C.
Tresser
, “Oscillators with chaotic behavior: An illustration of a theorem by Shilnikov
,” J. Stat. Phys.
27
, 171
–182
(1982
). 60.
A.
Arneodo
, P.
Coullet
, E.
Spiegel
, and C.
Tresser
, “Asymptotic chaos
,” Physica D
14
, 327
–347
(1985
). 61.
O. E.
Rössler
, “An equation for continuous chaos
,” Phys. Lett. A
57
, 397
–398
(1976
). 62.
V. V.
Bykov
, “On systems with separatrix contour containing two saddle-foci
,” J. Math. Sci.
95
, 2513
–2522
(1999
). 63.
V. V.
Bykov
, “On the structure of bifurcations sets of dynamical systems that are systems with a separatrix contour containing saddle-focus,” in Methods of Qualitative Theory of Differential Equations (Gorky University, Russia, 1980), pp. 44–72 (in Russian).64.
A.
Algaba
, M.
Merino
, F.
Fernández-Sánchez
, and A. J.
Rodríguez-Luis
, “Open-to-closed curves of saddle-node bifurcations of periodic orbits near a nontransversal T-point in Chua’s equation
,” Int. J. Bifurcation Chaos
16
, 2637
–2647
(2006
). 65.
A.
Lempel
and J.
Ziv
, “On the complexity of finite sequences
,” IEEE Trans. Inf. Theory
22
, 75
–81
(1976
). 66.
Deterministic Chaos Prospector (DCP) toolkit: https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector.
© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.