Consider any network of n identical Kuramoto oscillators in which each oscillator is coupled bidirectionally with unit strength to at least μ(n1) other oscillators. There is a critical value of the connectivity, μc, such that whenever μ>μc, the system is guaranteed to converge to the all-in-phase synchronous state for almost all initial conditions, but when μ<μc, there are networks with other stable states. The precise value of the critical connectivity remains unknown, but it has been conjectured to be μc=0.75. In 2020, Lu and Steinerberger proved that μc0.7889, and Yoneda, Tatsukawa, and Teramae proved in 2021 that μc>0.6838. This paper proves that μc0.75 and explain why this is the best upper bound that one can obtain by a purely linear stability analysis.

1.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
(
1967
).
2.
C. S.
Peskin
,
Mathematical Aspects of Heart Physiology
(
Courant Institute of Mathematical Sciences
,
1975
), p.
268
.
3.
Y.
Kuramoto
,
Chemical Oscillations, Waves, and Turbulence
(
Springer
,
1984
).
4.
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
SIAM J. Appl. Math.
50
,
1645
(
1990
).
5.
S.
Watanabe
, and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
(
1994
).
6.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
), Vol. 12.
7.
M. H.
Matheny
,
J.
Emenheiser
,
W.
Fon
,
A.
Chapman
,
A.
Salova
,
M.
Rohden
,
J.
Li
,
M. H.
de Badyn
,
M.
Pósfai
,
L.
Duenas-Osorio
et al., “
Exotic states in a simple network of nanoelectromechanical oscillators
,”
Science
363
,
eaav7932
(
2019
).
8.
A.
Jadbabaie
,
N.
Motee
, and
M.
Barahona
, “On the stability of the Kuramoto model of coupled nonlinear oscillators,” in Proceedings 2004 American Control Conference (IEEE, 2004), Vol. 5, p. 4296.
9.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
, “
The size of the sync basin
,”
Chaos
16
,
015103
(
2006
).
10.
E.
Mallada
and
A.
Tang
, “Synchronization of phase-coupled oscillators with arbitrary topology,” in Proceedings 2010 American Control Conference (IEEE, 2010), p. 1777.
11.
R.
Taylor
, “
There is no non-zero stable fixed point for dense networks in the homogeneous Kuramoto model
,”
J. Phys. A: Math. Theor.
45
,
055102
(
2012
).
12.
F.
Dörfler
, and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
(
2014
).
13.
L. M.
Pecora
,
F.
Sorrentino
,
A. M.
Hagerstrom
,
T. E.
Murphy
, and
R.
Roy
, “
Cluster synchronization and isolated desynchronization in complex networks with symmetries
,”
Nat. Commun.
5
,
4079
(
2014
).
14.
A.
Pikovsky
, and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
15.
E. A.
Canale
, and
P.
Monzón
, “
Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization
,”
Chaos
25
,
023106
(
2015
).
16.
D.
Mehta
,
N. S.
Daleo
,
F.
Dörfler
, and
J. D.
Hauenstein
, “
Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis
,”
Chaos
25
,
053103
(
2015
).
17.
F. A.
Rodrigues
,
T. K.
DM. Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
(
2016
).
18.
D. M.
Abrams
,
L. M.
Pecora
, and
A. E.
Motter
, “
Introduction to focus issue: Patterns of network synchronization
,”
Chaos
26
,
094601
(
2016
).
19.
L.
DeVille
, and
B.
Ermentrout
, “
Phase-locked patterns of the Kuramoto model on 3-regular graphs
,”
Chaos
26
,
094820
(
2016
).
20.
Y.
Sokolov
, and
G. B.
Ermentrout
, “
When is sync globally stable in sparse networks of identical Kuramoto oscillators?
Physica A
533
,
122070
(
2019
).
21.
S.
Ling
,
R.
Xu
, and
A. S.
Bandeira
, “
On the landscape of synchronization networks: A perspective from nonconvex optimization
,”
SIAM J. Optim.
29
,
1807
(
2019
).
22.
J.
Lu
, and
S.
Steinerberger
, “
Synchronization of Kuramoto oscillators in dense networks
,”
Nonlinearity
33
,
5905
(
2020
).
23.
A.
Townsend
,
M.
Stillman
, and
S. H.
Strogatz
, “
Dense networks that do not synchronize and sparse ones that do
,”
Chaos
30
,
083142
(
2020
).
24.
R.
Yoneda
,
T.
Tatsukawa
, and
J.
Teramae
, “The lower bound of the network connectivity guaranteeing in-phase synchronization,” arXiv:2104.05954 (2021).
25.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (Springer, Berlin, 1975).
26.
H.
Daido
, “
Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators
,”
Prog. Theor. Phys.
88
,
1213
(
1992
).
27.
J. C.
Perez
, and
F.
Ritort
, “
A moment-based approach to the dynamical solution of the Kuramoto model
,”
J. Phys. A: Math. Gen.
30
,
8095
(
1997
).
28.
Yu.
Terada
, and
Y. Y.
Yamaguchi
, “
Linear response theory for coupled phase oscillators with general coupling functions
,”
J. Phys. A: Math. Gen.
53
,
044001
(
2020
).
You do not currently have access to this content.