Consider any network of identical Kuramoto oscillators in which each oscillator is coupled bidirectionally with unit strength to at least other oscillators. There is a critical value of the connectivity, , such that whenever , the system is guaranteed to converge to the all-in-phase synchronous state for almost all initial conditions, but when , there are networks with other stable states. The precise value of the critical connectivity remains unknown, but it has been conjectured to be . In 2020, Lu and Steinerberger proved that , and Yoneda, Tatsukawa, and Teramae proved in 2021 that . This paper proves that and explain why this is the best upper bound that one can obtain by a purely linear stability analysis.
REFERENCES
1.
A. T.
Winfree
, “Biological rhythms and the behavior of populations of coupled oscillators
,” J. Theor. Biol.
16
, 15
(1967
). 2.
C. S.
Peskin
, Mathematical Aspects of Heart Physiology
(Courant Institute of Mathematical Sciences
, 1975
), p. 268
.3.
Y.
Kuramoto
, Chemical Oscillations, Waves, and Turbulence
(Springer
, 1984
).4.
R. E.
Mirollo
, and S. H.
Strogatz
, “Synchronization of pulse-coupled biological oscillators
,” SIAM J. Appl. Math.
50
, 1645
(1990
). 5.
S.
Watanabe
, and S. H.
Strogatz
, “Constants of motion for superconducting Josephson arrays
,” Physica D
74
, 197
(1994
). 6.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization: A Universal Concept in Nonlinear Sciences
(Cambridge University Press
, 2003
), Vol. 12.7.
M. H.
Matheny
, J.
Emenheiser
, W.
Fon
, A.
Chapman
, A.
Salova
, M.
Rohden
, J.
Li
, M. H.
de Badyn
, M.
Pósfai
, L.
Duenas-Osorio
et al., “Exotic states in a simple network of nanoelectromechanical oscillators
,” Science
363
, eaav7932
(2019
). 8.
A.
Jadbabaie
, N.
Motee
, and M.
Barahona
, “On the stability of the Kuramoto model of coupled nonlinear oscillators,” in Proceedings 2004 American Control Conference (IEEE, 2004), Vol. 5, p. 4296.9.
D. A.
Wiley
, S. H.
Strogatz
, and M.
Girvan
, “The size of the sync basin
,” Chaos
16
, 015103
(2006
). 10.
E.
Mallada
and A.
Tang
, “Synchronization of phase-coupled oscillators with arbitrary topology,” in Proceedings 2010 American Control Conference (IEEE, 2010), p. 1777.11.
R.
Taylor
, “There is no non-zero stable fixed point for dense networks in the homogeneous Kuramoto model
,” J. Phys. A: Math. Theor.
45
, 055102
(2012
). 12.
F.
Dörfler
, and F.
Bullo
, “Synchronization in complex networks of phase oscillators: A survey
,” Automatica
50
, 1539
(2014
). 13.
L. M.
Pecora
, F.
Sorrentino
, A. M.
Hagerstrom
, T. E.
Murphy
, and R.
Roy
, “Cluster synchronization and isolated desynchronization in complex networks with symmetries
,” Nat. Commun.
5
, 4079
(2014
). 14.
A.
Pikovsky
, and M.
Rosenblum
, “Dynamics of globally coupled oscillators: Progress and perspectives
,” Chaos
25
, 097616
(2015
). 15.
E. A.
Canale
, and P.
Monzón
, “Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization
,” Chaos
25
, 023106
(2015
). 16.
D.
Mehta
, N. S.
Daleo
, F.
Dörfler
, and J. D.
Hauenstein
, “Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis
,” Chaos
25
, 053103
(2015
). 17.
F. A.
Rodrigues
, T. K.
DM. Peron
, P.
Ji
, and J.
Kurths
, “The Kuramoto model in complex networks
,” Phys. Rep.
610
, 1
(2016
). 18.
D. M.
Abrams
, L. M.
Pecora
, and A. E.
Motter
, “Introduction to focus issue: Patterns of network synchronization
,” Chaos
26
, 094601
(2016
). 19.
L.
DeVille
, and B.
Ermentrout
, “Phase-locked patterns of the Kuramoto model on 3-regular graphs
,” Chaos
26
, 094820
(2016
). 20.
Y.
Sokolov
, and G. B.
Ermentrout
, “When is sync globally stable in sparse networks of identical Kuramoto oscillators?
” Physica A
533
, 122070
(2019
). 21.
S.
Ling
, R.
Xu
, and A. S.
Bandeira
, “On the landscape of synchronization networks: A perspective from nonconvex optimization
,” SIAM J. Optim.
29
, 1807
(2019
). 22.
J.
Lu
, and S.
Steinerberger
, “Synchronization of Kuramoto oscillators in dense networks
,” Nonlinearity
33
, 5905
(2020
). 23.
A.
Townsend
, M.
Stillman
, and S. H.
Strogatz
, “Dense networks that do not synchronize and sparse ones that do
,” Chaos
30
, 083142
(2020
). 24.
R.
Yoneda
, T.
Tatsukawa
, and J.
Teramae
, “The lower bound of the network connectivity guaranteeing in-phase synchronization,” arXiv:2104.05954 (2021).25.
Y.
Kuramoto
, “Self-entrainment of a population of coupled non-linear oscillators,” in International Symposium on Mathematical Problems in Theoretical Physics (Springer, Berlin, 1975).26.
H.
Daido
, “Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators
,” Prog. Theor. Phys.
88
, 1213
(1992
). 27.
J. C.
Perez
, and F.
Ritort
, “A moment-based approach to the dynamical solution of the Kuramoto model
,” J. Phys. A: Math. Gen.
30
, 8095
(1997
). 28.
Yu.
Terada
, and Y. Y.
Yamaguchi
, “Linear response theory for coupled phase oscillators with general coupling functions
,” J. Phys. A: Math. Gen.
53
, 044001
(2020
). © 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.