We study the parameter space of a family of planar maps, which are linear on each of the right and left half-planes. We consider the set of parameters for which every orbit recurs to the boundary between half-planes. These parameters consist of algebraic curves, determined by the symbolic dynamics of the itinerary that connects boundary points. We study the algebraic and geometrical properties of these curves, in relation to such a symbolic dynamics.

1.
P.
Alessandri
and
V.
Berthé
, “
Three distance theorems and combinatorics on words
,”
Enseign. Math.
44
,
103
132
(
1998
).
2.
V.
Bazier-Matte
,
D.
Racicot-Desloges
, and
T.
McMillan
, “
Friezes and continuant polynomials with parameters
,”
Bol. Soc. Parana. Mat.
36
,
57
81
(
2018
).
3.
A. F.
Beardon
,
S. R.
Bullett
, and
P. J.
Rippon
, “
Periodic orbits of difference equations
,”
Proc. Roy. Soc. Edinburgh
125
,
657
674
(
1995
).
4.
M.
di Bernardo
,
C. J.
Budd
,
A. R.
Champneys
, and
P.
Kowalczyk
,
Piecewise-smooth Dynamical Systems. Theory and Applications
(
Springer-Verlag
,
London
,
2008
).
5.
M.
Boshernitzan
, “
A condition for minimal interval-exchange maps to be uniquely ergodic
,”
Duke Math. J.
52
,
723
752
(
1985
).
6.
F. W.
Clarke
,
W. N.
Everitt
,
L. L.
Littlejohn
, and
S. J. R.
Vorster
, “
H. J. S. Smith and the Fermat two squares theorem
,”
Amer. Math. Monthly
106
,
652
665
(
1999
).
7.
D.
Cox
,
J.
Little
, and
D.
O’Shea
,
Ideals, Varieties, and Algorithms
(
Springer-Verlag
,
New York
,
1997
).
8.
R. L.
Devaney
, “
A piecewise linear model for the zones of instability of an area preserving map
,”
Physica D
10
,
387
393
(
1984
).
9.
L. B.
Garcia-Morato
,
E.
Freire Macias
,
E.
Ponce Nuñez
, and
F.
Torres Perat
, “
Bifurcation patterns in homogeneous area-preserving piecewise-linear map
,”
Qualitat. Theory Dyn. Sys.
18
,
547
582
(
2019
).
10.
R. L.
Graham
,
D. E.
Knuth
, and
O.
Patashnik
,
Concrete Mathematics
(
Addison Wesley
,
New York
,
1989
).
11.
M. B.
Herman
, “
Sur la conjugation différentiable des diff’eomorphismes du cercle à des rotations
,”
Inst. Hautes Études Sci. Publ. Math
49
,
5
33
(
1979
).
12.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
13.
A. Y.
Khinchin
,
Continued Fractions
(
The University of Chicago Press
,
Chicago
,
1964
) (English translation).
14.
J. C.
Lagarias
and
E.
Rains
, “
Dynamics of a family of piecewise-linear area-preserving plane maps. I. Rational rotation numbers
,”
J. Difference Eqns. Appl.
11
,
1089
1108
(
2005
).
15.
J. C.
Lagarias
and
E.
Rains
, “
Dynamics of a family of piecewise-linear area-preserving plane maps. II. Invariant circles
,”
J. Difference Eqns. Appl.
11
,
1137
1163
(
2005
).
16.
J. C.
Lagarias
and
E.
Rains
, “
Dynamics of a family of piecewise-linear area-preserving plane maps. III. Cantor set spectra
,”
J. Difference Eqns. Appl.
11
,
1205
1224
(
2005
).
17.
J. S. W.
Lamb
and
J. A. G.
Roberts
, “
Time-reversal symmetry in dynamical systems: A survey
,”
Physica D
112
,
1
39
(
1998
).
18.
P. J.
McMarthy
,
Algebraic Extensions of Fields
(
Dover Publications
,
New York
,
1991
).
19.
S.
Morier-Genoud
,
V.
Ovsienko
, and
F.
Boat
, “
Continued fractions and triangulations, modular group and polygon dissections
,”
Jahresb. Deutsch. Math. Ver.
121
,
91
136
(
2019
).
20.
I.
Niven
,
Irrational Numbers
(
The Mathematical Association of America
,
Washington DC
,
1956
).
21.
N.
Phytheas Fogg
,
Substitutions in Dynamics, Arithmetics and Combinatorics
(
Springer-Verlag
,
Berlin
,
2002
).
22.
J. A. G.
Roberts
, “
Escaping orbits in trace maps
,”
Physica A
228
,
295
325
(
1996
).
23.
J. A. G.
Roberts
,
A.
Saito
, and
F.
Vivaldi
, “Rotational parameters of a family of piecewise linear maps” (unpublished).
24.
D. J.
Simpson
, “
The structure of mode-locking regions of piecewise-linear continuous maps: I. Nearby mode-locking regions and shrinking points
,”
Nonlinearity
30
,
382
444
(
2017
).
25.
D. J.
Simpson
, “
The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps
,”
Nonlinearity
31
,
1905
1939
(
2018
).
26.
D. J.
Simpson
and
J. D.
Meiss
, “
Shrinking point bifurcations of resonance tongues for piecewise-smooth, continuous maps
,”
Nonlinearity
22
,
1123
1144
(
2009
).
You do not currently have access to this content.