Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized m-splay states constituting a special subclass of phase-locked states with vanishing mth order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto–Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.

1.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
, “
The Kuramoto model: A simple paradigm for synchronization phenomena
,”
Rev. Mod. Phys.
77
,
137
(
2005
).
2.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
, 1st ed. (
Cambridge University Press
,
Cambridge
,
2001
).
3.
A. T.
Winfree
,
The Geometry of Biological Time
(
Springer
,
New York
,
1980
).
4.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
,
Weakly Connected Neural Networks
(
Springer
,
New York
,
1997
).
5.
B.
Pietras
and
A.
Daffertshofer
, “
Network dynamics of coupled oscillators and phase reduction techniques
,”
Phys. Rep.
819
,
1
(
2019
).
6.
P.
Ashwin
,
S.
Coombes
, and
R.
Nicks
, “
Mathematical frameworks for oscillatory network dynamics in neuroscience
,
J. Math. Neurosci.
6:2
,
2
(
2016
).
7.
V.
Klinshov
,
S.
Yanchuk
,
A.
Stephan
, and
V. I.
Nekorkin
, “
Phase response function for oscillators with strong forcing or coupling
,”
Europhys. Lett.
118
,
50006
(
2017
).
8.
M.
Rosenblum
and
A.
Pikovsky
, “
Numerical phase reduction beyond the first order approximation
,”
Chaos
29
,
011105
(
2019
).
9.
G. B.
Ermentrout
,
Y.
Park
, and
D.
Wilson
, “
Recent advances in coupled oscillator theory
,”
Philos. Trans. R. Soc. A
377
,
20190092
(
2019
).
10.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
11.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
(
2000
).
12.
S. H.
Strogatz
and
I.
Stewart
, “
Coupled oscillators and biological synchronization
,”
Sci. Am.
269
,
102
(
1993
).
13.
S. H.
Strogatz
,
Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life
(
Hyperion
,
New York
,
2003
).
14.
F. A.
Rodrigues
,
T. K. D.
M. Peron
,
P.
Ji
, and
J.
Kurths
, “
The Kuramoto model in complex networks
,”
Phys. Rep.
610
,
1
(
2016
).
15.
M.
Breakspear
,
S.
Heitmann
, and
A.
Daffertshofer
, “
Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model
,”
Front. Hum. Neurosci.
4
,
190
(
2010
).
16.
L.
Lücken
,
O. V.
Popovych
,
P. A.
Tass
, and
S.
Yanchuk
, “
Noise-enhanced coupling between two oscillators with long-term plasticity
,”
Phys. Rev. E
93
,
032210
(
2016
).
17.
M.
Madadi Asl
,
A.
Valizadeh
, and
P. A.
Tass
, “
Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses
,”
Front. Physiol.
9
,
1849
(
2018
).
18.
V.
Röhr
,
R.
Berner
,
E. L.
Lameu
,
O. V.
Popovych
, and
S.
Yanchuk
, “
Frequency cluster formation and slow oscillations in neural populations with plasticity
,”
PLoS ONE
14
,
e0225094
(
2019
).
19.
R.
Berner
,
S.
Vock
,
E.
Schöll
, and
S.
Yanchuk
, “
Desynchronization transitions in adaptive networks
,”
Phys. Rev. Lett.
126
,
028301
(
2021
).
20.
C.
Bick
,
M.
Goodfellow
,
C. R.
Laing
, and
E. A.
Martens
, “
Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review
,”
J. Math. Neurosci.
10
,
9
(
2020
).
21.
G.
Filatrella
,
A. H.
Nielsen
, and
N. F.
Pedersen
, “
Analysis of a power grid using a Kuramoto-like model
,”
Eur. Phys. J. B
61
,
485
(
2008
).
22.
L.
Tumash
,
S.
Olmi
, and
E.
Schöll
, “
Stability and control of power grids with diluted network topology
,”
Chaos
29
,
123105
(
2019
).
23.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
, “
Enhancing power grid synchronization and stability through time delayed feedback control
,”
Phys. Rev. E
100
,
062306
(
2019
).
24.
F.
Hellmann
,
P.
Schultz
,
P.
Jaros
,
R.
Levchenko
,
T.
Kapitaniak
,
J.
Kurths
, and
Y.
Maistrenko
, “
Network-induced multistability through lossy coupling and exotic solitary states
,”
Nat. Commun.
11
,
592
(
2020
).
25.
C. H.
Totz
,
S.
Olmi
, and
E.
Schöll
, “
Control of synchronization in two-layer power grids
,”
Phys. Rev. E
102
,
022311
(
2020
).
26.
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
, “
What adaptive neuronal networks teach us about power grids
,”
Phys. Rev. E
103
,
042315
(
2021
).
27.
Y.
Maistrenko
,
B.
Penkovsky
, and
M.
Rosenblum
, “
Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions
,”
Phys. Rev. E
89
,
060901
(
2014
).
28.
O. E.
Omel’chenko
and
E.
Knobloch
, “
Chimerapedia: Coherence–incoherence patterns in one, two and three dimensions
,”
New J. Phys.
21
,
093034
(
2019
).
29.
E.
Teichmann
and
M.
Rosenblum
, “
Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions
,”
Chaos
29
,
093124
(
2019
).
30.
S.
Watanabe
and
S. H.
Strogatz
, “
Integrability of a globally coupled oscillator array
,”
Phys. Rev. Lett.
70
,
2391
(
1993
).
31.
S.
Watanabe
and
S. H.
Strogatz
, “
Constants of motion for superconducting Josephson arrays
,”
Physica D
74
,
197
(
1994
).
32.
S. A.
Marvel
,
R. E.
Mirollo
, and
S. H.
Strogatz
, “
Identical phase oscillators with global sinusoidal coupling evolve by möbius group action
,”
Chaos
19
,
043104
(
2009
).
33.
I.
Stewart
, “
Phase oscillators with sinusoidal coupling interpreted in terms of projective geometry
,”
Int. J. Bifurc. Chaos
21
,
1795
(
2011
).
34.
S. H.
Strogatz
and
R. E.
Mirollo
, “
Stability of incoherence in a population of coupled oscillators
,”
J. Stat. Phys.
63
,
613
(
1991
).
35.
E.
Ott
and
T. M.
Antonsen
, “
Low dimensional behavior of large systems of globally coupled oscillators
,”
Chaos
18
,
037113
(
2008
).
36.
O. E.
Omel’chenko
,
Y.
Maistrenko
, and
P. A.
Tass
, “
Chimera states: The natural link between coherence and incoherence
,”
Phys. Rev. Lett.
100
,
044105
(
2008
).
37.
D. M.
Abrams
,
R. E.
Mirollo
,
S. H.
Strogatz
, and
D. A.
Wiley
, “
Solvable model for chimera states of coupled oscillators
,”
Phys. Rev. Lett.
101
,
084103
(
2008
).
38.
I.
Omelchenko
,
O. E.
Omel’chenko
,
P.
Hövel
, and
E.
Schöll
, “
When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states
,”
Phys. Rev. Lett.
110
,
224101
(
2013
).
39.
O. E.
Omel’chenko
, “
The mathematics behind chimera states
,”
Nonlinearity
31
,
R121
(
2018
).
40.
A.
Pikovsky
and
M.
Rosenblum
, “
Dynamics of globally coupled oscillators: Progress and perspectives
,”
Chaos
25
,
097616
(
2015
).
41.
G. A.
Gottwald
, “
Model reduction for networks of coupled oscillators
,”
Chaos
25
,
053111
(
2015
).
42.
C. C.
Gong
and
A.
Pikovsky
, “
Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles
,”
Phys. Rev. E
100
,
062210
(
2019
).
43.
D. L.
Smith
and
G. A.
Gottwald
, “
Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit
,”
Chaos
30
,
093107
(
2020
).
44.
A.
Pikovsky
and
M.
Rosenblum
, “
Partially integrable dynamics of hierarchical populations of coupled oscillators
,”
Phys. Rev. Lett.
101
,
264103
(
2008
).
45.
E.
Montbrió
,
D.
Pazó
, and
A.
Roxin
, “
Macroscopic description for networks of spiking neurons
,”
Phys. Rev. X
5
,
021028
(
2015
).
46.
I. V.
Tyulkina
,
D. S.
Goldobin
,
L. S.
Klimenko
, and
A.
Pikovsky
, “
Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz
,”
Phys. Rev. Lett.
120
,
264101
(
2018
).
47.
D. S.
Goldobin
,
M.
di Volo
, and
A.
Torcini
, “A reduction methodology for fluctuation driven population dynamics,” e-print arXiv:2101.11679 (2021).
48.
R.
Ronge
and
M. A.
Zaks
, “
Emergence and stability of periodic two-cluster states for ensembles of excitable units
,”
Phys. Rev. E
103
,
012206
(
2021
).
49.
D. A.
Wiley
,
S. H.
Strogatz
, and
M.
Girvan
, “
The size of the sync basin
,”
Chaos
16
,
015103
(
2006
).
50.
T.
Girnyk
,
M.
Hasler
, and
Y.
Maistrenko
, “
Multistability of twisted states in non-locally coupled Kuramoto-type models
,”
Chaos
22
,
013114
(
2012
).
51.
O.
Burylko
,
A.
Mielke
,
M.
Wolfrum
, and
S.
Yanchuk
, “
Coexistence of hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling
,”
SIAM J. Appl. Dyn. Syst.
17
,
2076
(
2018
).
52.
R.
Berner
,
A.
Polanska
,
E.
Schöll
, and
S.
Yanchuk
, “
Solitary states in adaptive nonlocal oscillator networks
,”
Eur. Phys. J. Spec. Top.
229
,
2183
(
2020
).
53.
C. U.
Choe
,
T.
Dahms
,
P.
Hövel
, and
E.
Schöll
, “
Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states
,”
Phys. Rev. E
81
,
025205(R)
(
2010
).
54.
W.
Zou
and
M.
Zhan
, “
Splay states in a ring of coupled oscillators: From local to global coupling
,”
SIAM J. Appl. Dyn. Syst.
8
,
1324
(
2009
).
55.
P.
Perlikowski
,
S.
Yanchuk
,
O. V.
Popovych
, and
P. A.
Tass
, “
Periodic patterns in a ring of delay-coupled oscillators
,”
Phys. Rev. E
82
,
036208
(
2010
).
56.
M.
Calamai
,
A.
Politi
, and
A.
Torcini
, “
Stability of splay states in globally coupled rotators
,”
Phys. Rev. E
80
,
036209
(
2009
).
57.
S.
Olmi
,
A.
Torcini
, and
A.
Politi
, “
Linear stability in networks of pulse-coupled neurons
,”
Front. Comput. Neurosci.
8
,
8
(
2014
).
58.
M.
Dipoppa
,
M.
Krupa
,
A.
Torcini
, and
B. S.
Gutkin
, “
Splay states in finite pulse-coupled networks of excitable neurons
,”
SIAM J. Appl. Dyn. Syst.
11
,
864
(
2012
).
59.
J.
Gómez-Gardeñes
,
Y.
Moreno
, and
A.
Arenas
, “
Paths to synchronization on complex networks
,”
Phys. Rev. Lett.
98
,
034101
(
2007
).
60.
F.
Dörfler
and
F.
Bullo
, “
Synchronization in complex networks of phase oscillators: A survey
,”
Automatica
50
,
1539
(
2014
).
61.
D.
Pazó
, “
Thermodynamic limit of the first-order phase transition in the Kuramoto model
,”
Phys. Rev. E
72
,
046211
(
2005
).
62.
J.
Gómez-Gardeñes
,
S.
Gómez
,
A.
Arenas
, and
Y.
Moreno
, “
Explosive synchronization transitions in scale-free networks
,”
Phys. Rev. Lett.
106
,
128701
(
2011
).
63.
S.
Boccaletti
,
J. A.
Almendral
,
S.
Guan
,
I.
Leyva
,
Z.
Liu
,
I.
Sendiña-Nadal
,
Z.
Wang
, and
Y.
Zou
, “
Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization
,”
Phys. Rep.
660
,
1
(
2016
).
64.
V.
Nicosia
,
M.
Valencia
,
M.
Chavez
,
A.
Díaz-Guilera
, and
V.
Latora
, “
Remote synchronization reveals network symmetries and functional modules
,”
Phys. Rev. Lett.
110
,
174102
(
2013
).
65.
G. B.
Ermentrout
, “
An adaptive model for synchrony in the firefly pteroptyx malaccae
,”
J. Math. Biol.
29
,
571
(
1991
).
66.
S.
Olmi
,
A.
Navas
,
S.
Boccaletti
, and
A.
Torcini
, “
Hysteretic transitions in the Kuramoto model with inertia
,”
Phys. Rev. E
90
,
042905
(
2014
).
67.
P.
Jaros
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Chimera states on the route from coherence to rotating waves
,”
Phys. Rev. E
91
,
022907
(
2015
).
68.
S.
Olmi
, “
Chimera states in coupled Kuramoto oscillators with inertia
,”
Chaos
25
,
123125
(
2015
).
69.
I. V.
Belykh
,
B. N.
Brister
, and
V. N.
Belykh
, “
Bistability of patterns of synchrony in Kuramoto oscillators with inertia
,”
Chaos
26
,
094822
(
2016
).
70.
Y.
Maistrenko
,
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
, and
T.
Kapitaniak
, “
Smallest chimera states
,”
Phys. Rev. E
95
,
010203R
(
2017
).
71.
P.
Jaros
,
S.
Brezetsky
,
R.
Levchenko
,
D.
Dudkowski
,
T.
Kapitaniak
, and
Y.
Maistrenko
, “
Solitary states for coupled oscillators with inertia
,”
Chaos
28
,
011103
(
2018
).
72.
N.
Kruk
,
Y.
Maistrenko
, and
H.
Koeppl
, “
Solitary states in the mean-field limit
,”
Chaos
30
,
111104
(
2020
).
73.
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
,
T.
Kapitaniak
, and
Y.
Maistrenko
, “
Chimera complexity
,”
Phys. Rev. E
103
,
L050204
(
2021
).
74.
D.
Taylor
,
E.
Ott
, and
J. G.
Restrepo
, “
Spontaneous synchronization of coupled oscillator systems with frequency adaptation
,”
Phys. Rev. E
81
,
046214
(
2010
).
75.
M. K. S.
Yeung
and
S. H.
Strogatz
, “
Time delay in the Kuramoto model of coupled oscillators
,”
Phys. Rev. Lett.
82
,
648
(
1999
).
76.
S.
Petkoski
and
A.
Stefanovska
, “
Kuramoto model with time-varying parameters
,”
Phys. Rev. E
86
,
046212
(
2012
).
77.
P.
Seliger
,
S. C.
Young
, and
L. S.
Tsimring
, “
Plasticity and learning in a network of coupled phase oscillators
,”
Phys. Rev. E
65
,
041906
(
2002
).
78.
Y.
Maistrenko
,
B.
Lysyansky
,
C.
Hauptmann
,
O.
Burylko
, and
P. A.
Tass
, “
Multistability in the Kuramoto model with synaptic plasticity
,”
Phys. Rev. E
75
,
066207
(
2007
).
79.
T.
Aoki
and
T.
Aoyagi
, “
Scale-free structures emerging from co-evolution of a network and the distribution of a diffusive resource on it
,”
Phys. Rev. Lett.
109
,
208702
(
2012
).
80.
D. V.
Kasatkin
,
S.
Yanchuk
,
E.
Schöll
, and
V. I.
Nekorkin
, “
Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings
,”
Phys. Rev. E
96
,
062211
(
2017
).
81.
I.
Bacic
,
S.
Yanchuk
,
M.
Wolfrum
, and
I.
Franović
, “
Noise-induced switching in two adaptively coupled excitable systems
,”
Eur. Phys. J. Spec. Top.
227
,
1077
(
2018
).
82.
R.
Berner
,
E.
Schöll
, and
S.
Yanchuk
, “
Multiclusters in networks of adaptively coupled phase oscillators
,”
SIAM J. Appl. Dyn. Syst.
18
,
2227
(
2019
).
83.
I.
Franović
,
S.
Yanchuk
,
S.
Eydam
,
I.
Bacic
, and
M.
Wolfrum
, “
Dynamics of a stochastic excitable system with slowly adapting feedback
,
Chaos
30
,
083109
(
2020
). e-print arXiv:2001.07650.
84.
R.
Berner
,
J.
Sawicki
, and
E.
Schöll
, “
Birth and stabilization of phase clusters by multiplexing of adaptive networks
,”
Phys. Rev. Lett.
124
,
088301
(
2020
).
85.
S.
Vock
,
R.
Berner
,
S.
Yanchuk
, and
E.
Schöll
, “
Effect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks
,”
Sci. Iran. D
28
(3),
1669
(
2021
).
86.
H.
Daido
, “
Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling
,”
Phys. Rev. Lett.
73
,
760
(
1994
).
87.
R.
Berner
,
J.
Fialkowski
,
D. V.
Kasatkin
,
V. I.
Nekorkin
,
S.
Yanchuk
, and
E.
Schöll
, “
Hierarchical frequency clusters in adaptive networks of phase oscillators
,”
Chaos
29
,
103134
(
2019
).
88.
O. E.
Omel’chenko
,
M.
Wolfrum
, and
C. R.
Laing
, “
Partially coherent twisted states in arrays of coupled phase oscillators
,”
Chaos
24
,
023102
(
2014
).
89.
I.
Stewart
,
M.
Golubitsky
, and
M.
Pivato
, “
Symmetry groupoids and patterns of synchrony in coupled cell networks
,”
SIAM J. Appl. Dyn. Syst.
2
,
609
(
2003
).
90.
P.
Ashwin
and
J. W.
Swift
, “
The dynamics of n weakly coupled identical oscillators
,”
J. Nonlinear Sci.
2
,
69
(
1992
).
91.
P.
Ashwin
,
O.
Burylko
, and
Y.
Maistrenko
, “
Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators
,”
Physica D
237
,
454
(
2008
).
92.
P.
Ashwin
,
C.
Bick
, and
O.
Burylko
, “
Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling
,”
Front. Appl. Math. Stat.
2
,
7
(
2016
).
93.
H.
Sakaguchi
and
Y.
Kuramoto
, “
A soluble active rotater model showing phase transitions via mutual entertainment
,”
Prog. Theor. Phys
76
,
576
(
1986
).
94.
R.
Delabays
, “
Dynamical equivalence between Kuramoto models with first- and higher-order coupling
,”
Chaos
29
,
113129
(
2019
).
95.
P. S.
Skardal
and
A.
Arenas
, “
Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching
,”
Commun. Phys.
3
,
218
(
2020
).
96.
K. A.
Kroma-Wiley
,
P. J.
Mucha
, and
D. S.
Bassett
, “Synchronization of coupled Kuramoto Oscillators under Resource Constraints,” e-print arXiv:2002.04092v2 (2020).
97.
S. H.
Hou
, “
Classroom note: A simple proof of the Leverrier–Faddeev characteristic polynomial algorithm
,”
SIAM Rev.
40
,
706
(
1998
).
98.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
2004
).
99.
F.
Mormann
,
T.
Kreuz
,
R. G.
Andrzejak
,
P.
David
,
K.
Lehnertz
, and
C. E.
Elger
, “
Epileptic seizures are preceded by a decrease in synchronization
,”
Epilepsy Res.
53
,
173
(
2003
).
100.
R. G.
Andrzejak
,
C.
Rummel
,
F.
Mormann
, and
K.
Schindler
, “
All together now: Analogies between chimera state collapses and epileptic seizures
,”
Sci. Rep.
6
,
23000
(
2016
).
101.
M.
Gerster
,
R.
Berner
,
J.
Sawicki
,
A.
Zakharova
,
A.
Skoch
,
J.
Hlinka
,
K.
Lehnertz
, and
E.
Schöll
, “
FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena
,”
Chaos
30
,
123130
(
2020
).
102.
P. A.
Tass
,
I.
Adamchic
,
H. J.
Freund
,
T.
von Stackelberg
, and
C.
Hauptmann
, “
Counteracting tinnitus by acoustic coordinated reset neuromodulation
,”
Restor. Neurol. Neurosci.
30
,
137
(
2012
).
103.
P. A.
Tass
and
O. V.
Popovych
, “
Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: Theoretical concept and modelling
,”
Biol. Cybern.
106
,
27
(
2012
).
104.
P. A.
Tass
, “
A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations
,”
Biol. Cybern.
89
,
81
(
2003
).
105.
J.
Liesen
and
V.
Mehrmann
,
Linear Algebra
(
Springer
,
Cham
,
2015
).
You do not currently have access to this content.