Cardiac electrophysiology modeling deals with a complex network of excitable cells forming an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial patterns of activation, known as cardiac alternans, featuring multiscale emerging behavior. On these grounds, we propose a novel mathematical formulation for cardiac electrophysiology modeling and simulation incorporating spatially non-local couplings within a physiological reaction–diffusion scenario. In particular, we formulate, a space-fractional electrophysiological framework, extending and generalizing similar works conducted for the monodomain model. We characterize one-dimensional excitation patterns by performing an extended numerical analysis encompassing a broad spectrum of space-fractional derivative powers and various intra- and extracellular conductivity combinations. Our numerical study demonstrates that (i) symmetric properties occur in the conductivity parameters’ space following the proposed theoretical framework, (ii) the degree of non-local coupling affects the onset and evolution of discordant alternans dynamics, and (iii) the theoretical framework fully recovers classical formulations and is amenable for parametric tuning relying on experimental conduction velocity and action potential morphology.

1.
N.
Cusimano
,
A.
Gizzi
,
F. H.
Fenton
,
S.
Filippi
, and
L.
Gerardo-Giorda
, “
Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: A quantitative study
,”
Commun. Nonlinear Sci. Numer. Simul.
84
,
105152
(
2020
).
2.
N. A.
Trayanova
,
A. N.
Doshi
, and
A.
Prakosa
, “
How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
12
,
e1477
(
2020
).
3.
T.
You
,
C.
Luo
,
K.
Zhang
, and
H.
Zhang
, “
Electrophysiological mechanisms underlying t-wave alternans and their role in arrhythmogenesis
,”
Front. Physiol.
12
,
235
(
2021
).
4.
S. A.
Niederer
,
J.
Lumens
, and
N. A.
Trayanova
, “
Computational models in cardiology
,”
Nat. Rev. Cardiol.
16
,
100
111
(
2019
).
5.
V.
Biasci
,
L.
Sacconi
,
E. N.
Cytrynbaum
,
D. A.
Pijnappels
,
T. D.
Coster
,
A.
Shrier
,
L.
Glass
, and
G.
Bub
, “
Universal mechanisms for self-termination of rapid cardiac rhythm
,”
Chaos
30
,
121107
(
2020
).
6.
A.
Gizzi
,
E.
Cherry
,
R. F.
Gilmour
, Jr.
,
S.
Luther
,
S.
Filippi
, and
F. H.
Fenton
, “
Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue
,”
Front. Physiol.
4
,
71
(
2013
).
7.
Z.
Qu
,
G.
Hu
,
A.
Garfinkel
, and
J.
N.Weiss
, “
Nonlinear and stochastic dynamics in the heart
,”
Phys. Rep.
543
,
61
162
(
2014
).
8.
G.
Hu
,
Z.
Song
,
J.
Landaw
, and
Z.
Qu
, “
Spatially discordant repolarization alternans in the absence of conduction velocity restitution
,”
Biophys. J.
118
,
2574
2587
(
2020
).
9.
W. A.
Ramirez
,
A.
Gizzi
,
K. L.
Sack
,
J. M.
Guccione
, and
D. E.
Hurtado
, “
In-silico study of the cardiac arrhythmogenic potential of biomaterial injection therapy
,”
Sci. Rep.
10
,
1
14
(
2020
).
10.
S.
Pezzuto
,
A.
Gharaviri
,
U.
Schotten
,
M.
Potse
,
G.
Conte
,
M. L.
Caputo
,
F.
Regoli
,
R.
Krause
, and
A.
Auricchio
, “
Beat-to-beat p-wave morphological variability in patients with paroxysmal atrial fibrillation: An in silico study
,”
Europace
20
,
iii26
iii35
(
2018
).
11.
A.
Loppini
,
A.
Gizzi
,
C.
Cherubini
,
E. M.
Cherry
,
F. H.
Fenton
, and
S.
Filippi
, “
Spatiotemporal correlation uncovers fractional scaling in cardiac tissue
,”
Phys. Rev. E
103
,
020201
(
2019
).
12.
D.
Bini
,
C.
Cherubini
,
S.
Filippi
,
A.
Gizzi
, and
P. E.
Ricci
, “
On spiral waves arising in natural systems
,”
Commun. Comput. Phys.
8
,
610
(
2010
).
13.
C.
Huang
,
Z.
Song
,
Z.
Di
, and
Z.
Qu
, “
Stability of spatially discordant repolarization alternans in cardiac tissue
,”
Chaos
30
,
123141
(
2020
).
14.
M. A.
Colman
, “
The multiple mechanisms of spatially discordant alternans in the heart
,”
Biophys. J.
118
,
2336
2338
(
2020
).
15.
L. M.
Munoz
,
A. R. M.
Gelzer
,
F. H.
Fenton
,
W.
Qian
,
W.
Lin
,
R. F.
Gilmour
, Jr.
, and
N. F.
Otani
, “
Discordant alternans as a mechanism for initiation of ventricular fibrillation in vitro
,”
J. Am. Heart Assoc.
7
,
e007898
(
2018
).
16.
H. V.
Perez
and
F. H.
Fenton
, “
Low dimensional structures in cardiac alternans
,”
Bull. Am. Phys. Soc.
65
,
1
(
2020
): available at https://meetings.aps.org/Meeting/MAR20/Session/B22.12.
17.
A.
Barone
,
F. H.
Fenton
, and
A.
Veneziani
, “
Numerical sensitivity analysis of a variational data assimilation procedure for cardiac conductivities
,”
Chaos
27
,
093930
(
2017
).
18.
A.
Quaglino
,
S.
Pezzuto
,
P. S.
Koutsourelakis
,
A.
Auricchio
, and
R.
Krause
, “
Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints
,”
Int. J. Numer. Methods Biomed. Eng.
34
,
e2985
(
2018
).
19.
A.
Barone
,
A.
Gizzi
,
F. H.
Fenton
,
S.
Filippi
, and
A.
Veneziani
, “
Experimental validation of a variational data assimilation procedure for estimating space-dependent cardiac conductivities
,”
Comput. Methods Appl. Mech. Eng.
358
,
112615
(
2020
).
20.
P.
Pathmanathan
,
S.
Galappaththige
,
J.
Cordeiro
,
A.
Kaboudian
,
F.
Fenton
, and
R.
Gray
, “
Data-driven uncertainty quantification for cardiac electrophysiological models: Impact of physiological variability on action potential and spiral wave dynamics
,”
Front. Physiol.
11
,
585400
(
2020
).
21.
A.
Barone
,
M. G.
Carlino
,
A.
Gizzi
,
S.
Perotto
, and
A.
Veneziani
, “
Efficient estimation of cardiac conductivities: A proper generalized decomposition approach
,”
J. Comput. Phys.
423
,
109810
(
2020
).
22.
C. D.
Marcotte
,
F. H.
Fenton
,
M. J.
Hoffman
, and
E. M.
Cherry
, “
Robust data assimilation with noise: Applications to cardiac dynamics
,”
Chaos
31
,
013118
(
2021
).
23.
C. S.
Henriquez
, “
Simulating the electrical behavior of cardiac tissue using the bidomain model
,”
Crit. Rev. Biomed. Eng.
21
,
1
77
(
1993
).
24.
R. H.
Clayton
,
O.
Bernus
,
E. M.
Cherry
,
H.
Dierckx
,
F. H.
Fenton
,
L.
Mirabella
,
A. V.
Panfilov
,
F. B.
Sachse
,
G.
Seeman
, and
H.
Zhang
, “
Models of cardiac tissue electrophysiology: Progress challenges and open questions
,”
Prog. Biophys. Mol. Biol.
104
,
22
48
(
2011
).
25.
M.
Potse
,
B.
Dubé
,
J.
Richer
, and
A.
Vinet
, “
A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart
,”
IEEE Trans. Biomed. Eng.
53
,
2425
2435
(
2006
).
26.
J. P.
Wikswo
, Jr.
,
S.-F.
Lin
, and
R. A.
Abbas
, “
Virtual electrodes in cardiac tissue: A common mechanism for anodal and cathodal stimulation
,”
Biophys. J.
69
,
2195
2210
(
1995
).
27.
I. R.
Efimov
,
R. A.
Gray
, and
B. J.
Roth
, “
Virtual electrodes and deexcitation: New insights into fibrillation induction and defibrillation
,”
J. Cardiovasc. Electrophysiol.
11
,
339
353
(
2000
).
28.
S.
Luther
,
F. H.
Fenton
,
B. G.
Kornreich
,
A.
Squires
,
P.
Brittihn
,
D.
Hornung
,
M.
Zabel
,
J.
Flanders
,
A.
Glanduli
,
L.
Campoy
,
E. M.
Cherry
,
G.
Luther
,
G.
Hasenfuss
,
V. I.
Krinsky
,
A.
Pumir
,
R. F.
Gilmour
, Jr.
, and
E.
Bodenschatz
, “
Low-energy control of electrical turbulence in the heart
,”
Nature
475
,
235
239
(
2011
).
29.
A.
Loppini
,
A.
Gizzi
,
R. R.
Baier
,
C.
Cherubini
,
F. H.
Fenton
, and
S.
Filippi
, “
Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics
,”
Front. Physiol.
9
,
1714
(
2018
).
30.
D. J.
Christini
,
M. L.
Riccio
,
C. A.
Culianu
,
J. J.
Fox
,
A.
Karma
, and
R. F.
Gilmour
, “
Control of electrical alternans in canine cardiac Purkinje fibers
,”
Phys. Rev. Lett.
96
,
104101
(
2006
).
31.
T.
Krogh-Madsen
,
A.
Karma
,
M. L.
Riccio
,
P. N.
Jordan
,
D. J.
Christini
, and
R. F.
Gilmour
, Jr.
, “
Off-site control of repolarization alternans in cardiac fibers
,”
Phys. Rev. E
81
,
011915
(
2010
).
32.
N.
Wei
,
Y.
Mori
, and
E. G.
Tolkacheva
, “
The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43
,”
J. Theor. Biol.
397
,
103
114
(
2016
).
33.
S. H.
Weinberg
, “
Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltage-gated gap junctions
,”
Chaos
27
,
093908
(
2017
).
34.
D. E.
Hurtado
,
S.
Castro
, and
A.
Gizzi
, “
Computational modeling of non-linear diffusion in cardiac electrophysiology: A novel porous-medium approach
,”
Comput. Methods Appl. Mech. Eng.
300
,
70
83
(
2016
).
35.
C.
Cherubini
,
S.
Filippi
,
A.
Gizzi
, and
R.
Ruiz-Baier
, “
A note on stress-driven anisotropic diffusion and its role in active deformable media
,”
J. Theor. Biol.
430
,
221
228
(
2017
).
36.
A.
Gizzi
et al.,
Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential
,”
Chaos
27
,
093919
(
2017
).
37.
D. E.
Hurtado
,
J.
Jiliberto
, and
G.
Panasenko
, “
Non-Ohmic tissue conduction in cardiac electrophysiology: Upscaling the non-linear voltage-dependent conductance gap junctions
,”
PLoS Comput. Biol.
16
,
e1007232
(
2020
).
38.
A.
Bueno-Orovio
,
D.
Kay
,
V.
Grau
,
B.
Rodriguez
, and
K.
Burrage
, “
Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization
,”
J. R. Soc. Interface
11
,
20140352
(
2014
).
39.
N.
Cusimano
,
A.
Bueno-Orovio
,
I.
Turner
, and
K.
Burrage
, “
On the order of the fractional Laplacian in determining the spatio-temporal evolution of a space-fractional model of cardiac electrophysiology
,”
PLoS One
10
,
e0143938
(
2015
).
40.
N.
Cusimano
and
L.
Gerardo-Giorda
, “
A space-fractional monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries
,”
J. Comput. Phys.
362
,
409
424
(
2018
).
41.
Y.
Wang
,
L.
Cai
,
X.
Feng
,
X.
Luo
, and
H.
Gao
, “
A ghost structure finite difference method for a fractional FitzHugh-Nagumo monodomain model on moving irregular domain
,”
J. Comput. Phys.
428
,
110081
(
2021
).
42.
T.
Comlekoglu
and
S. H.
Weinberg
, “
Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity
,”
Chaos
27
,
093904
(
2017
).
43.
T.
Comlekoglu
and
S. H.
Weinberg
, “
Memory in a fractional-order cardiomyocyte model alters voltage- and calcium-mediated instabilities
,”
Commun. Nonlinear Sci. Numer. Simul.
89
,
105340
(
2020
).
44.
J. P.
Ugarte
,
C.
Tobón
,
A. M.
Lopes
, and
J. A. T.
Machado
, “
Atrial rotor dynamics under complex fractional order diffusion
,”
Front. Physiol.
9
,
975
(
2018
).
45.
J. P.
Ugarte
,
C.
Tobón
,
A. M.
Lopes
, and
J. A. T.
Machado
, “
A complex order model of atrial electrical propagation from fractal porous cell membrane
,”
Fractals
28
,
2050106
(
2020
).
46.
P.
Lenarda
,
A.
Gizzi
, and
M.
Paggi
, “
A modeling framework for electro-mechanical interaction between excitable deformable cells
,”
Eur. J. Mech. A Solids
72
,
374
392
(
2018
).
47.
L. M.
Treml
,
E.
Bartocci
, and
A.
Gizzi
, “
Modeling and analysis of cardiac hybrid cellular automata via GPU-accelerated Monte Carlo simulation
,”
Mathematics
9
,
164
(
2021
).
48.
Y.
Shiferaw
,
M. A.
Watanabe
,
A.
Garfinkel
,
J. N.
Weiss
, and
A.
Karma
, “
Model of intracellular calcium cycling in ventricular myocytes
,”
Biophys. J.
85
,
3666
3686
(
2003
).
49.
L.
Romero
,
E.
Alvarez-Lacalle
, and
Y.
Shiferaw
, “
Stochastic coupled map model of subcellular calcium cycling in cardiac cells
,”
Chaos
29
,
023125
(
2019
).
50.
P.
Pathmanathan
,
M. O.
Bernabeu
,
R.
Bordas
,
J.
Cooper
,
A.
Garny
,
J. M.
Pitt-Francis
,
J. P.
Whiteley
, and
D. J.
Gavaghan
, “
A numerical guide to the solution of the bidomain equations of cardiac electrophysiology
,”
Prog. Biophys. Mol. Biol.
102
,
136
155
(
2010
).
51.
N.
Cusimano
,
F.
del Teso
, and
L.
Gerardo-Giorda
, “
Numerical approximations for fractional elliptic equations via the method of semigroups
,”
EASIM M2AN
54
,
751
774
(
2020
).
52.
G. W.
Beeler
and
H.
Reuter
, “
Reconstruction of the action potential of ventricular myocardial fibres
,”
J. Physiol.
268
,
177
210
(
1977
).
53.
A.
Bueno-Orovio
,
D.
Kay
, and
K.
Burrage
, “
Fourier spectral methods for fractional-in-space reaction-diffusion equations
,”
BIT Numer. Math.
54
,
937
954
(
2014
).
54.
K. N.
Aronis
,
R. L.
Ali
,
A.
Prakosa
,
H.
Ashikaga
,
R. D.
Berger
,
J. B.
Hakim
,
J.
Liang
,
H.
Tandri
,
F.
Teng
,
J.
Chrispin
, and
N. A.
Trayanova
, “
Accurate conduction velocity maps and their association with scar distribution on magnetic resonance imaging in patients with postinfarction ventricular tachycardias
,”
Circ. Arrhythmia Electrophysiol.
13
,
e007792
(
2020
).
55.
M. A.
Watanabe
,
F. H.
Fenton
,
S. J.
Evans
,
H. M.
Hastings
, and
A.
Karma
, “
Mechanisms for discordant alternans
,”
J. Cardiovasc. Electrophysiol.
12
,
196
206
(
2002
).
56.
A.
Gizzi
,
A.
Loppini
,
E.
Cherry
,
C.
Cherubini
,
F. H.
Fenton
, and
S.
Filippi
, “
Multi-band decomposition analysis: Application to cardiac alternans as a function of temperature
,”
Physiol. Meas.
38
,
833
(
2017
).
57.
I.
Uzelac
,
Y.
Ji
,
D.
Hornung
,
J.
Schröder-Scheteling
,
S.
Luther
,
R.
Gray
,
E.
Cherry
, and
F.
Fenton
, “
Simultaneous quantification of spatially discordant alternans in voltage and intracellular calcium in Langendorff-perfused rabbit hearts and inconsistencies with models of cardiac action potentials and Ca transients
,”
Front. Physiol.
8
,
819
(
2017
).
58.
A.
Loppini
,
A.
Barone
,
A.
Gizzi
,
C.
Cherubini
,
F. H.
Fenton
, and
S.
Filippi
, “
Thermal effects on cardiac alternans onset and development: A spatiotemporal correlation analysis
,”
Phys. Rev. E
103
,
L040201
(
2021
).
59.
B.
Johnston
and
P.
Johnston
, “
Approaches for determining cardiac bidomain conductivity values: Progress and challenges
,”
Med. Biol. Eng. Comput.
58
,
2919
2935
(
2020
).
60.
A.
Garfinkel
, “
Eight (or more) kinds of alternans
,”
J. Electrocardiol.
40
,
S70
S74
(
2007
).
61.
M.
Bertolaso
,
A.
Capolupo
,
C.
Cherubini
,
S.
Filippi
,
A.
Gizzi
,
A.
Loppini
, and
G.
Vitiello
, “
The role of coherence in emergent behavior of biological systems
,”
Electromagn. Biol. Med.
34
,
138
140
(
2015
).
62.
A.
Loppini
,
S.
Filippi
, and
H. E.
Stanley
, “
Critical transitions in heterogeneous networks: Loss of low-degree nodes as an early warning signal
,”
Phys. Rev. E
99
,
040301
(
2019
).
63.
H.
Ashikaga
and
R. G.
James
, “
Inter-scale information flow as a surrogate for downward causation that maintains spiral waves
,”
Chaos
28
,
075306
(
2018
).
64.
A.
Loppini
and
M. G.
Pedersen
, “
Gap-junction coupling can prolong beta-cell burst period by an order of magnitude via phantom bursting
,”
Chaos
28
,
063111
(
2018
).
65.
A.
Loppini
,
C.
Cherubini
,
M.
Bertolaso
, and
S.
Filippi
, “
Breaking down calcium timing in heterogenous cells populations
,”
Biosystems
191–192
,
104117
(
2018
).
You do not currently have access to this content.