Studies on stratospheric ozone have attracted much attention due to its serious impacts on climate changes and its important role as a tracer of Earth’s global circulation. Tropospheric ozone as a main atmospheric pollutant damages human health as well as the growth of vegetation. Yet, there is still a lack of a theoretical framework to fully describe the variation of ozone. To understand ozone’s spatiotemporal variance, we introduce the eigen microstate method to analyze the global ozone mass mixing ratio between January 1, 1979 and June 30, 2020 at 37 pressure layers. We find that eigen microstates at different geopotential heights can capture different climate phenomena and modes. Without deseasonalization, the first eigen microstates capture the seasonal effect and reveal that the phase of the intra-annual cycle moves with the geopotential heights. After deseasonalization, by contrast, the collective patterns from the overall trend, El Niño-Southern Oscillation (ENSO), quasi-biennial oscillation, and tropopause pressure are identified by the first few significant eigen microstates. The theoretical framework proposed here can also be applied to other complex Earth systems.

1.
M.
Brauer
,
G.
Freedman
,
J.
Frostad
,
A.
van Donkelaar
,
R. V.
Martin
,
F.
Dentener
,
R.
van Dingenen
,
K.
Estep
,
H.
Amini
,
J. S.
Apte
,
K.
Balakrishnan
,
L.
Barregard
,
D.
Broday
,
V.
Feigin
,
S.
Ghosh
,
P. K.
Hopke
,
L. D.
Knibbs
,
Y.
Kokubo
,
Y.
Liu
,
S.
Ma
,
L.
Morawska
,
J. L. T.
Sangrador
,
G.
Shaddick
,
H. R.
Anderson
,
T.
Vos
,
M. H.
Forouzanfar
,
R. T.
Burnett
, and
A.
Cohen
, “
Ambient air pollution exposure estimation for the global burden of disease 2013
,”
Environ. Sci. Technol.
50
,
79
88
(
2016
).
2.
A.
Karimi
,
M.
Shirmardi
,
M.
Hadei
,
Y. T.
Birgani
,
A.
Neisi
,
A.
Takdastan
, and
G.
Goudarzi
, “
Concentrations and health effects of short- and long-term exposure to PM2.5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017)
,”
Ecotoxicol. Environ. Saf.
180
,
542
548
(
2019
).
3.
M.
Xu
,
Q.
Yao
,
D.
Chen
,
M.
Li
,
R.
Li
,
B.
Gao
,
B.
Zhao
, and
Z.
Chen
, “
Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison
,”
Environ. Pollut.
283
,
117099
(
2021
).
4.
WMO (World Meteorological Organization)
, “Scientific assessment of ozone depletion: 2018,” Global Ozone Research and Monitoring Project–Report No. 58 (Geneva, 2018).
5.
Z.
Feng
,
E.
Hu
,
X.
Wang
,
L.
Jiang
, and
X.
Liu
, “
Ground-level O3 pollution and its impacts on food crops in China: A review
,”
Environ. Pollut.
199
,
42
48
(
2015
).
6.
J.
Staehelin
,
N. R. P.
Harris
,
C.
Appenzeller
, and
J.
Eberhard
, “
Ozone trends: A review
,”
Rev. Geophys.
39
,
231
290
, https://doi.org/10.1029/1999RG000059 (
2001
).
7.
P. J.
Nowack
,
N. L.
Abraham
,
A. C.
Maycock
,
P.
Braesicke
,
J. M.
Gregory
,
M. M.
Joshi
,
A.
Osprey
, and
J. A.
Pyle
, “
A large ozone-circulation feedback and its implications for global warming assessments
,”
Nat. Clim. Chang.
5
,
41
45
(
2015
).
8.
L. M.
Polvani
,
D. W.
Waugh
,
G. J. P.
Correa
, and
S.-W.
Son
, “
Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere
,”
J. Clim.
24
,
795
812
(
2011
).
9.
P.
Jöckel
,
H.
Tost
,
A.
Pozzer
,
C.
Brühl
,
J.
Buchholz
,
L.
Ganzeveld
,
P.
Hoor
,
A.
Kerkweg
,
M. G.
Lawrence
,
R.
Sander
,
B.
Steil
,
G.
Stiller
,
M.
Tanarhte
,
D.
Taraborrelli
,
J.
van Aardenne
, and
J.
Lelieveld
, “
The atmospheric chemistry general circulation model ECHAM5/MESSy1: Consistent simulation of ozone from the surface to the mesosphere
,”
Atmos. Chem. Phys.
6
,
5067
5104
(
2006
).
10.
S.
Brönnimann
,
J.
Luterbacher
,
C.
Schmutz
,
H.
Wanner
, and
J.
Staehelin
, “
Variability of total ozone at Arosa, Switzerland, since 1931 related to atmospheric circulation indices
,”
Geophys. Res. Lett.
27
,
2213
2216
, (
2000
).
11.
S. J.
Oltmans
and
W. D.
Komhyr
, “
Surface ozone distributions and variations from 1973–1984: Measurements at the NOAA Geophysical Monitoring for Climatic Change Baseline Observatories
,”
J. Geophys. Res.: Atmos.
91
,
5229
5236
, https://doi.org/10.1029/JD091iD04p05229 (
1986
).
12.
J. R.
Herman
,
R.
McPeters
,
R.
Stolarski
,
D.
Larko
, and
R.
Hudson
, “
Global average ozone change from November 1978 to May 1990
,”
J. Geophys. Res.: Atmos.
96
,
17297
17305
, https://doi.org/10.1029/91JD01553 (
1991
).
13.
Y.
Liu
,
C.
Lu
,
Y.
Wang
, and
E.
Kyrölä
, “
The quasi-biennial and semi-annual oscillation features of tropical O3, NO2, and NO3 revealed by GOMOS satellite observations for 2002–2008
,”
Chin. Sci. Bull.
56
,
1921
1929
(
2011
).
14.
F.
Xie
,
J.
Li
,
W.
Tian
,
J.
Zhang
, and
J.
Shu
, “
The impacts of two types of El Niño on global ozone variations in the last three decades
,”
Adv. Atmos. Sci.
31
,
1113
1126
(
2014
).
15.
C. D.
Camp
,
M. S.
Roulston
, and
Y. L.
Yung
, “
Temporal and spatial patterns of the interannual variability of total ozone in the tropics
,”
J. Geophys. Res.: Atmos.
108
,
4643
, https://doi.org/10.1029/2001JD001504 (
2003
).
16.
J.
Fan
,
J.
Meng
,
J.
Ludescher
,
X.
Chen
,
Y.
Ashkenazy
,
J.
Kurths
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Statistical physics approaches to the complex Earth system
,”
Phys. Rep.
896
,
1
84
(
2020
).
17.
H. A.
Dijkstra
,
E.
Hernández-García
,
C.
Masoller
, and
M.
Barreiro
,
Networks in Climate
(
Cambridge University Press
,
Cambridge
,
2019
).
18.
A.
Agarwal
,
N.
Marwan
,
R.
Maheswaran
,
B.
Merz
, and
J.
Kurths
, “
Quantifying the roles of single stations within homogeneous regions using complex network analysis
,”
J. Hydrol. (Amst)
563
,
802
810
(
2018
).
19.
K.
Yamasaki
,
A.
Gozolchiani
, and
S.
Havlin
, “
Climate networks around the globe are significantly affected by El Niño
,”
Phys. Rev. Lett.
100
,
228501
(
2008
).
20.
J. F.
Donges
,
Y.
Zou
,
N.
Marwan
, and
J.
Kurths
, “
Complex networks in climate dynamics
,”
Eur. Phys. J. Spec. Top.
174
,
157
179
(
2009
).
21.
N.
Ekhtiari
,
A.
Agarwal
,
N.
Marwan
, and
R. V.
Donner
, “
Disentangling the multi-scale effects of sea-surface temperatures on global precipitation: A coupled networks approach
,”
Chaos
29
,
063116
(
2019
).
22.
A.
Agarwal
,
L.
Caesar
,
N.
Marwan
,
R.
Maheswaran
,
B.
Merz
, and
J.
Kurths
, “
Network-based identification and characterization of teleconnections on different scales
,”
Sci. Rep.
9
,
8808
(
2019
).
23.
A.
Agarwal
,
N.
Marwan
,
R.
Maheswaran
,
U.
Ozturk
,
J.
Kurths
, and
B.
Merz
, “
Optimal design of hydrometric station networks based on complex network analysis
,”
Hydrol. Earth Syst. Sci.
24
,
2235
2251
(
2020
).
24.
J.
Gao
,
S. V.
Buldyrev
,
H. E.
Stanley
, and
S.
Havlin
, “
Networks formed from interdependent networks
,”
Nat. Phys.
8
,
40
48
(
2012
).
25.
Z.
Lu
,
N.
Yuan
,
L.
Chen
, and
Z.
Gong
, “
On the impacts of El Niño events: A new monitoring approach using complex network analysis
,”
Geophys. Res. Lett.
47
,
e2019GL086533
, https://doi.org/10.1029/2019GL086533 (
2020
).
26.
J.
Ludescher
,
A.
Gozolchiani
,
M. I.
Bogachev
,
A.
Bunde
,
S.
Havlin
, and
H. J.
Schellnhuber
, “
Improved El Niño forecasting by cooperativity detection
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
11742
11745
(
2013
).
27.
J.
Meng
,
J.
Fan
,
Y.
Ashkenazy
,
A.
Bunde
, and
S.
Havlin
, “
Forecasting the magnitude and onset of El Niño based on climate network
,”
New J. Phys.
20
,
043036
(
2018
).
28.
N.
Ying
,
D.
Zhou
,
Z. G.
Han
,
Q. H.
Chen
,
Q.
Ye
, and
Z. G.
Xue
, “
Rossby waves detection in the CO2 and temperature multilayer climate network
,”
Geophys. Res. Lett.
47
,
e2019GL086507
, https://doi.org/10.1029/2019GL086507 (
2020
).
29.
N.
Ying
,
W.
Wang
,
J.
Fan
,
D.
Zhou
,
Z.
Han
,
Q.
Chen
,
Q.
Ye
, and
Z.
Xue
, “
Climate network approach reveals the modes of CO2 concentration to surface air temperature
,”
Chaos
31
,
031104
(
2021
).
30.
N.
Ying
,
D.
Zhou
,
Z.
Han
,
Q.
Chen
,
Q.
Ye
,
Z.
Xue
, and
W.
Wang
, “
Climate networks suggest Rossby-waves–related CO2 concentrations to surface air temperature
,”
EPL
132
,
19001
(
2020
).
31.
Y.
Zhang
,
J.
Fan
,
X.
Chen
,
Y.
Ashkenazy
, and
S.
Havlin
, “
Significant impact of Rossby waves on air pollution detected by network analysis
,”
Geophys. Res. Lett.
46
,
12476
12485
, https://doi.org/10.1029/2019GL084649 (
2019
).
32.
N.
Boers
,
B.
Goswami
,
A.
Rheinwalt
,
B.
Bookhagen
,
B.
Hoskins
, and
J.
Kurths
, “
Complex networks reveal global pattern of extreme-rainfall teleconnections
,”
Nature
566
,
373
377
(
2019
).
33.
Y.
Sun
,
G.
Hu
,
Y.
Zhang
,
B.
Lu
,
Z.
Lu
,
J.
Fan
,
X.
Li
,
Q.
Deng
, and
X.
Chen
, “
Eigen microstates and their evolutions in complex systems
,”
Commun. Theor. Phys.
73
,
065603
(
2021
).
34.
G. K.
Hu
,
T.
Liu
,
M. X.
Liu
,
W.
Chen
, and
X. S.
Chen
, “
Condensation of eigen microstate in statistical ensemble and phase transition
,”
Sci. China: Phys., Mech. Astron.
62
,
990511
(
2019
).
35.
H.
Hersbach
,
B.
Bell
,
P.
Berrisford
,
G.
Biavati
,
A.
Horányi
,
J.
Muñoz Sabater
,
J.
Nicolas
,
C.
Peubey
,
R.
Radu
,
I.
Rozum
,
D.
Schepers
,
A.
Simmons
,
C.
Soci
,
D.
Dee
, and
J.-N.
Thépaut
, “ERA5 hourly data on pressure levels from 1979 to present,” Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2018). .
36.
I.
Petropavlovskikh
,
S.
Godin-Beekmann
,
D.
Hubert
,
R.
Damadeo
,
B.
Hassler
, and
V.
Sofieva
, “SPARC/IO3C/GAW report on long-term ozone trends and uncertainties in the stratosphere,” SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018 (2019). .
37.
K.
Wolter
and
M. S.
Timlin
, “
Measuring the strength of ENSO events: How does 1997/98 rank?
,”
Weather
53
,
315
324
(
1998
).
38.
T.
Zhang
,
A.
Hoell
,
J.
Perlwitz
,
J.
Eischeid
,
D.
Murray
,
M.
Hoerling
, and
T. M.
Hamill
, “
Towards probabilistic multivariate ENSO monitoring
,”
Geophys. Res. Lett.
46
,
10532
10540
, https://doi.org/10.1029/2019GL083946 (
2019
).
39.
E.
Kalnay
,
M.
Kanamitsu
,
R.
Kistler
,
W.
Collins
,
D.
Deaven
,
L.
Gandin
,
M.
Iredell
,
S.
Saha
,
G.
White
,
J.
Woollen
,
Y.
Zhu
,
M.
Chelliah
,
W.
Ebisuzaki
,
W.
Higgins
,
J.
Janowiak
,
K. C.
Mo
,
C.
Ropelewski
,
J.
Wang
,
A.
Leetmaa
,
R.
Reynolds
,
R.
Jenne
, and
D.
Joseph
, “
The NCEP/NCAR 40-year reanalysis project
,”
Bull. Am. Meteorol. Soc.
77
,
437
472
(
1996
).
40.
C. D.
Rodgers
, “
Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation
,”
Rev. Geophys.
14
,
609
624
, https://doi.org/10.1029/RG014i004p00609 (
1976
).
41.
K. E.
Trenberth
and
L.
Smith
, “
The vertical structure of temperature in the tropics: Different flavors of El Niño
,”
J. Clim.
19
,
4956
4973
(
2006
).
42.
H. F.
Diaz
and
R. S.
Bradley
, “The Hadley circulation: Present, past, and future,” in The Hadley Circulation: Present, Past and Future, Advances in Global Change Research, edited by H. F. Diaz and R. S. Bradley (Springer Netherlands, Dordrecht, 2004), pp. 1–5.
43.
W.
Steinbrecht
,
H.
Claude
,
U.
Köhler
, and
K. P.
Hoinka
, “
Correlations between tropopause height and total ozone: Implications for long-term changes
,”
J. Geophys. Res.: Atmos.
103
,
19183
19192
, https://doi.org/10.1029/98JD01929 (
1998
).
44.
H.
Naoe
,
M.
Deushi
,
K.
Yoshida
, and
K.
Shibata
, “
Future changes in the ozone quasi-biennial oscillation with increasing GHGs and ozone recovery in CCMI simulations
,”
J. Clim.
30
,
6977
6997
(
2017
).
You do not currently have access to this content.