We revisit elliptic bursting dynamics from the viewpoint of torus canard solutions. We show that at the transition to and from elliptic burstings, classical or mixed-type torus canards may appear, the difference between the two being the fast subsystem bifurcation that they approach: saddle-node of cycles for the former and subcritical Hopf for the latter. We first showcase such dynamics in a Wilson–Cowan-type elliptic bursting model, then we consider minimal models for elliptic bursters in view of finding transitions to and from bursting solutions via both kinds of torus canards. We first consider the canonical model proposed by Izhikevich [SIAM J. Appl. Math. 60, 503–535 (2000)] and adapted to elliptic bursting by Ju et al. [Chaos 28, 106317 (2018)] and we show that it does not produce mixed-type torus canards due to a nongeneric transition at one end of the bursting regime. We, therefore, introduce a perturbative term in the slow equation, which extends this canonical form to a new one that we call Leidenator and which supports the right transitions to and from elliptic bursting via classical and mixed-type torus canards, respectively. Throughout the study, we use singular flows (ε=0) to predict the full system’s dynamics (ε>0 small enough). We consider three singular flows, slow, fast, and average slow, so as to appropriately construct singular orbits corresponding to all relevant dynamics pertaining to elliptic bursting and torus canards. Finally, we comment on possible links with mixed-type torus canards and folded-saddle-node singularities in non-canonical elliptic bursters that possess a natural three-timescale structure.

1
E. M.
Izhikevich
, “
Subcritical elliptic bursting of Bautin type
,”
SIAM J. Appl. Math.
60
,
503
535
(
2000
).
2
H.
Ju
,
A. B.
Neiman
, and
A. L.
Shilnikov
, “
Bottom-up approach to torus bifurcation in neuron models
,”
Chaos
28
,
106317
(
2018
).
3
P.
De Maesschalck
and
M.
Wechselberger
, “
Neural excitability and singular bifurcations
,”
J. Math. Neurosci.
5
,
1
32
(
2015
).
4
M.
Desroches
,
M.
Krupa
, and
S.
Rodrigues
, “
Inflection, canards and excitability threshold in neuronal models
,”
J. Math. Biol.
67
,
989
1017
(
2013
).
5
J.
Moehlis
, “
Canards for a reduction of the Hodgkin–Huxley equations
,”
J. Math. Biol.
52
,
141
153
(
2006
).
6
M. A.
Kramer
,
R. D.
Traub
, and
N. J.
Kopell
, “
New dynamics in cerebellar Purkinje cells: Torus canards
,”
Phys. Rev. Lett.
101
,
068103
(
2008
).
7
G. N.
Benes
,
A. M.
Barry
,
T. J.
Kaper
,
M. A.
Kramer
, and
J.
Burke
, “
An elementary model of torus canards
,”
Chaos
21
,
023131
(
2011
).
8
J.
Burke
,
M.
Desroches
,
A. M.
Barry
,
T. J.
Kaper
, and
M. A.
Kramer
, “
A showcase of torus canards in neuronal bursters
,”
J. Math. Neurosci.
2
,
3
(
2012
).
9
T.
Vo
, “
Generic torus canards
,”
Physica D
356
,
37
64
(
2017
).
10
M.
Desroches
,
J.
Burke
,
T. J.
Kaper
, and
M. A.
Kramer
, “
Canards of mixed type in a neural burster
,”
Phys. Rev. E
85
,
021920
(
2012
).
11
J.
Wojcik
and
A.
Shilnikov
, “
Voltage interval mappings for activity transitions in neuron models for elliptic bursters
,”
Physica D
240
,
1164
1180
(
2011
).
12
E. M.
Izhikevich
, “
Synchronization of elliptic bursters
,”
SIAM Rev.
43
,
315
344
(
2001
).
13
B. O.
Alving
, “
Spontaneous activity in isolated somata of Aplysia pacemaker neurons
,”
J. Gen. Physiol.
51
,
29
45
(
1968
).
14
W. B.
Adams
and
J. A.
Benson
, “
The generation and modulation of endogenous rhythmicity in the Aplysia bursting pacemaker neurone r15
,”
Prog. Biophys. Mol. Biol.
46
,
1
49
(
1985
).
15
R. J.
Butera
,
J. W.
Clark
,
C. C.
Canavier
,
D. A.
Baxter
, and
J. H.
Byrne
, “
Analysis of the effects of modulatory agents on a modeled bursting neuron: Dynamic interactions between voltage and calcium dependent systems
,”
J. Comput. Neurosci.
2
,
19
44
(
1995
).
16
D.
Cook
, “Electrical pacemaker mechanisms of pancreatic islet cells,” in Federation Proceedings (Federation Proceedings, 1984), Vol. 43, pp. 2368–2372.
17
Z.
Jian
,
J.
Xing
,
G.
Yang
, and
S.
Hu
, “
A novel bursting mechanism of type a neurons in injured dorsal root ganglia
,”
Neurosignals
13
,
150
156
(
2004
).
18
D.
Pinault
and
M.
Deschênes
, “
Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo
,”
Neuroscience
51
,
245
258
(
1992
).
19
I.
Atwater
,
C.
Dawson
,
A.
Scott
,
G.
Eddlestone
, and
E.
Rojas
, “
The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell
,”
Horm. Metab. Res. Suppl. Ser.
10
,
100
107
(
1980
).
20
J.
Rinzel
, “A formal classification of bursting mechanisms in excitable systems,” in Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (Springer, 1987), pp. 267–281.
21
E. M.
Izhikevich
, “
Neural excitability, spiking and bursting
,”
Int. J. Bifurcation Chaos
10
,
1171
1266
(
2000
).
22
M.
Golubitsky
,
K.
Josic
, and
T. J.
Kaper
, “An unfolding theory approach to bursting in fast–slow systems,” in Global Analysis of Dynamical Systems, edited by H. W. Broer, B. Krauskopf, and G. Vegter (IOP Publishing, 2001), pp. 277–308.
23
R.
Latorre
,
F. B.
Rodríguez
, and
P.
Varona
, “
Neural signatures: Multiple coding in spiking–bursting cells
,”
Biol. Cybern.
95
,
169
183
(
2006
).
24
A. C.
Welday
,
I. G.
Shlifer
,
M. L.
Bloom
,
K.
Zhang
, and
H. T.
Blair
, “
Cosine directional tuning of theta cell burst frequencies: Evidence for spatial coding by oscillatory interference
,”
J. Neurosci.
31
,
16157
16176
(
2011
).
25
J. B.
Ranck
, Jr., “
Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats: Part I. Behavioral correlates and firing repertoires
,”
Exp. Neurol.
41
,
462
531
(
1973
).
26
R. J.
Mason
and
S. P.
Rose
, “
Passive avoidance learning produces focal elevation of bursting activity in the chick brain: Amnesia abolishes the increase
,”
Behav. Neural Biol.
49
,
280
292
(
1988
).
27
B. W.
Connors
and
M. J.
Gutnick
, “
Intrinsic firing patterns of diverse neocortical neurons
,”
Trends Neurosci.
13
,
99
104
(
1990
).
28
A. K.
al Azad
and
P.
Ashwin
, “
Within-burst synchrony changes for coupled elliptic bursters
,”
SIAM J. Appl. Dyn. Syst.
9
,
261
281
(
2010
).
29
G. B.
Ermentrout
,
J.
Dutta-Moscato
, and
D.
Pinto
, “Elliptic bursters, depolarization block, and waves,” in Bursting: The Genesis of Rhythm in the Nervous System, edited by S. Coombes and P. C. Bressloff (World Scientific, 2005), pp. 385–396.
30
G.
Lajoie
and
E.
Shea-Brown
, “
Shared inputs, entrainment, and desynchrony in elliptic bursters: From slow passage to discontinuous circle maps
,”
SIAM J. Appl. Dyn. Syst.
10
,
1232
1271
(
2011
).
31
J.
Su
,
J.
Rubin
, and
D.
Terman
, “
Effects of noise on elliptic bursters
,”
Nonlinearity
17
,
133
(
2003
).
32
J.-P.
Françoise
,
Oscillations En Biologie: Analyse Qualitative et Modèles
(
Springer Science & Business Media
,
2005
), Vol. 46.
33
K.-L.
Roberts
,
J. E.
Rubin
, and
M.
Wechselberger
, “
Averaging, folded singularities, and torus canards: Explaining transitions between bursting and spiking in a coupled neuron model
,”
SIAM J. Appl. Dyn. Syst.
14
,
1808
1844
(
2015
).
34
H. R.
Wilson
and
J. D.
Cowan
, “
Excitatory and inhibitory interactions in localized populations of model neurons
,”
Biophys. J.
12
,
1
24
(
1972
).
35
J. D.
Touboul
,
M.
Krupa
, and
M.
Desroches
, “
Noise-induced canard and mixed-mode oscillations in large-scale stochastic networks
,”
SIAM J. Appl. Math.
75
,
2024
2049
(
2015
).
36
B.
Ermentrout
,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students
(
SIAM
,
2002
).
37
E.
Benoît
,
J.-L.
Callot
,
F.
Diener
, and
M.
Diener
, “
Chasse au canard
,”
Collect. Math.
32
,
37
119
(
1981
).
38
F.
Dumortier
and
R.
Roussarie
,
Canard Cycles and Center Manifolds
(
Memoirs of the American Mathematical Society
,
1996
), Vol. 557, p.
100
.
39
M.
Krupa
and
P.
Szmolyan
, “
Relaxation oscillation and canard explosion
,”
J. Differ. Equ.
174
,
312
368
(
2001
).
40
V.
Afraimovich
and
L. P.
Shilnikov
, “
Invariant two-dimensional tori, their breakdown and stochasticity
,”
Am. Math. Soc. Transl.
149
,
201
212
(
1991
).
41
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer Science & Business Media
,
2013
), Vol. 112.
42
T.
Bakri
and
F.
Verhulst
, “
Bifurcations of quasi-periodic dynamics: Torus breakdown
,”
Z. Angew. Math. Phys.
65
,
1053
1076
(
2014
).
43
M. R.
Cândido
and
D. D.
Novaes
, “
On the torus bifurcation in averaging theory
,”
J. Differ. Equ.
268
,
4555
4576
(
2020
).
44
M.
Brøns
,
M.
Krupa
, and
M.
Wechselberger
, “
Mixed mode oscillations due to the generalized canard phenomenon
,”
Fields Inst. Commun.
49
,
39
63
(
2006
).
45
E.
Lee
and
D.
Terman
, “
Uniqueness and stability of periodic bursting solutions
,”
J. Differ. Equ.
158
,
48
78
(
1999
).
46
T.
Vo
,
M. A.
Kramer
, and
T. J.
Kaper
, “
Amplitude-modulated bursting: A novel class of bursting rhythms
,”
Phys. Rev. Lett.
117
,
268101
(
2016
).
47
P.
Carter
, “
Spike-adding canard explosion in a class of square-wave bursters
,”
J. Nonlinear Sci.
30
,
2613
2669
(
2020
).
48
E.
Benoît
, “
Canards et enlacements
,”
Publ. Math. Inst. Hautes Études Sci.
72
,
63
91
(
1990
).
49
W.
Eckhaus
, (
1983
)
Relaxation oscillations including a standard chase on French ducks
. In:
F.
Verhulst
(eds)
Asymptotic Analysis II —. Lecture Notes in Mathematics
, vol
985
.
Springer
,
Berlin, Heidelberg
.
50
R.
Butera
, Jr.,
J.
Clark
, and
J. H.
Byrne
, “
Transient responses of a modeled bursting neuron: Analysis with equilibrium and averaged nullclines
,”
Biol. Cybern.
77
,
307
322
(
1997
).
51
J.
Hebbink
,
H.
Meijer
,
G.
Huiskamp
,
S.
van Gils
, and
F.
Leijten
, “
Phenomenological network models: Lessons for epilepsy surgery
,”
Epilepsia
58
,
e147
e151
(
2017
).
52
F.
Diener
and
M.
Diener
, “Maximal delay,” in Dynamic Bifurcations, edited by E. Benoît (Springer, 1991), pp. 71–86.
53
E. J.
Doedel
,
R. C.
Paffenroth
,
A. R.
Champneys
,
T. F.
Fairgrieve
,
Y. A.
Kuznetsov
,
B. E.
Oldeman
, and
X. J.
Wang
,
AUTO-07P: Continuation and bifurcation software for ordinary differential equations, 2007, available for download from
http://indy.cs.concordia.ca/auto.
54
M.
Krupa
and
M.
Wechselberger
, “
Local analysis near a folded saddle-node singularity
,”
J. Differ. Equ.
248
,
2841
2888
(
2010
).
55
B.
Letson
,
J. E.
Rubin
, and
T.
Vo
, “
Analysis of interacting local oscillation mechanisms in three-timescale systems
,”
SIAM J. Appl. Math.
77
,
1020
1046
(
2017
).
56
D.
Terman
, “
The transition from bursting to continuous spiking in excitable membrane models
,”
J. Nonlinear Sci.
2
,
135
182
(
1992
).
You do not currently have access to this content.