Since Bandt and Pompe’s seminal work, permutation entropy has been used in several applications and is now an essential tool for time series analysis. Beyond becoming a popular and successful technique, permutation entropy inspired a framework for mapping time series into symbolic sequences that triggered the development of many other tools, including an approach for creating networks from time series known as ordinal networks. Despite increasing popularity, the computational development of these methods is fragmented, and there were still no efforts focusing on creating a unified software package. Here, we present ordpy (http://github.com/arthurpessa/ordpy), a simple and open-source Python module that implements permutation entropy and several of the principal methods related to Bandt and Pompe’s framework to analyze time series and two-dimensional data. In particular, ordpy implements permutation entropy, Tsallis and Rényi permutation entropies, complexity–entropy plane, complexity–entropy curves, missing ordinal patterns, ordinal networks, and missing ordinal transitions for one-dimensional (time series) and two-dimensional (images) data as well as their multiscale generalizations. We review some theoretical aspects of these tools and illustrate the use of ordpy by replicating several literature results.

1.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
New York
,
2004
).
2.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
3.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
4.
C.
Bandt
and
B.
Pompe
, “
Permutation entropy: A natural complexity measure for time series
,”
Phys. Rev. Lett.
88
,
174102
(
2002
).
5.
N.
Nicolaou
and
J.
Georgiou
, “
Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
,”
Expert Syst. Appl.
39
,
202
209
(
2012
).
6.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Forbidden patterns, permutation entropy and stock market inefficiency
,”
Physica A
388
,
2854
2864
(
2009
).
7.
J.
Garland
,
T.
Jones
,
M.
Neuder
,
V.
Morris
,
J.
White
, and
E.
Bradley
, “
Anomaly detection in paleoclimate records using permutation entropy
,”
Entropy
20
,
931
(
2018
).
8.
R.
Yan
,
Y.
Liu
, and
R. X.
Gao
, “
Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines
,”
Mech. Syst. Signal Process.
29
,
474
484
(
2012
).
9.
M.
Matilla-García
and
M.
Ruiz Marín
, “
A non-parametric independence test using permutation entropy
,”
J. Econom.
144
,
139
155
(
2008
).
10.
M.
Zanin
,
L.
Zunino
,
O. A.
Rosso
, and
D.
Papo
, “
Permutation entropy and its main biomedical and econophysics applications: A review
,”
Entropy
14
,
1553
1577
(
2012
).
11.
M.
Riedl
,
A.
Müller
, and
N.
Wessel
, “
Practical considerations of permutation entropy
,”
Eur. Phys. J. Spec. Top.
222
,
249
262
(
2013
).
12.
J. M.
Amigó
,
K.
Keller
, and
V. A.
Unakafova
, “
Ordinal symbolic analysis and its application to biomedical recordings
,”
Philos. Trans. R. Soc. A
373
,
20140091
(
2015
).
13.
K.
Keller
,
T.
Mangold
,
I.
Stolz
, and
J.
Werner
, “
Permutation entropy: New ideas and challenges
,”
Entropy
19
,
134
(
2017
).
14.
O. A.
Rosso
,
H. A.
Larrondo
,
M. T.
Martin
,
A.
Plastino
, and
M. A.
Fuentes
, “
Distinguishing noise from chaos
,”
Phys. Rev. Lett.
99
,
154102
(
2007
).
15.
L.
Zunino
,
D.
Pérez
,
A.
Kowalski
,
M.
Martín
,
M.
Garavaglia
,
A.
Plastino
, and
O.
Rosso
, “
Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy
,”
Physica A
387
,
6057
6068
(
2008
).
16.
L. C.
Carpi
,
P. M.
Saco
, and
O.
Rosso
, “
Missing ordinal patterns in correlated noises
,”
Physica A
389
,
2020
2029
(
2010
).
17.
U.
Parlitz
,
S.
Berg
,
S.
Luther
,
A.
Schirdewan
,
J.
Kurths
, and
N.
Wessel
, “
Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics
,”
Comput. Biol. Med.
42
,
319
327
(
2012
).
18.
A. M.
Unakafov
and
K.
Keller
, “
Conditional entropy of ordinal patterns
,”
Physica D
269
,
94
102
(
2014
).
19.
Z.
Liang
,
Y.
Wang
,
X.
Sun
,
D.
Li
,
L. J.
Voss
,
J. W.
Sleigh
,
S.
Hagihira
, and
X.
Li
, “
EEG entropy measures in anesthesia
,”
Front. Comput. Neurosci.
9
,
16
(
2015
).
20.
Y.
Ruan
,
R. V.
Donner
,
S.
Guan
, and
Y.
Zou
, “
Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series
,”
Chaos
29
,
043111
(
2019
).
21.
L.
Zunino
,
F.
Olivares
, and
O. A.
Rosso
, “
Permutation min-entropy: An improved quantifier for unveiling subtle temporal correlations
,”
EPL
109
,
10005
(
2015
).
22.
C.
Bandt
, “
A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure
,”
Entropy
19
,
197
(
2017
).
23.
H. V.
Ribeiro
,
M.
Jauregui
,
L.
Zunino
, and
E. K.
Lenzi
, “
Characterizing time series via complexity-entropy curves
,”
Phys. Rev. E
95
,
062106
(
2017
).
24.
M.
Jauregui
,
L.
Zunino
,
E. K.
Lenzi
,
R. S.
Mendes
, and
H. V.
Ribeiro
, “
Characterization of time series via Rényi complexity-entropy curves
,”
Physica A
498
,
74
85
(
2018
).
25.
W.
Aziz
and
M.
Arif
, “Multiscale permutation entropy of physiological time series,” in 2005 Pakistan Section Multitopic Conference (IEEE, 2005), pp. 1–6.
26.
L.
Zunino
,
M. C.
Soriano
,
I.
Fischer
,
O. A.
Rosso
, and
C. R.
Mirasso
, “
Permutation-information-theory approach to unveil delay dynamics from time-series analysis
,”
Phys. Rev. E
82
,
046212
(
2010
).
27.
F. C.
Morabito
,
D.
Labate
,
F. L.
Foresta
,
A.
Bramanti
,
G.
Morabito
, and
I.
Palamara
, “
Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG
,”
Entropy
14
,
1186
1202
(
2012
).
28.
L.
Zunino
,
M. C.
Soriano
, and
O. A.
Rosso
, “
Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach
,”
Phys. Rev. E
86
,
046210
(
2012
).
29.
B.
Fadlallah
,
B.
Chen
,
A.
Keil
, and
J.
Príncipe
, “
Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information
,”
Phys. Rev. E
87
,
022911
(
2013
).
30.
J.
Xia
,
P.
Shang
,
J.
Wang
, and
W.
Shi
, “
Permutation and weighted-permutation entropy analysis for the complexity of nonlinear time series
,”
Commun. Nonlinear Sci. Numer. Simul.
31
,
60
68
(
2016
).
31.
H.
Azami
and
J.
Escudero
, “
Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation
,”
Comput. Methods Programs Biomed.
128
,
40
51
(
2016
).
32.
S.
Chen
,
P.
Shang
, and
Y.
Wu
, “
Weighted multiscale Rényi permutation entropy of nonlinear time series
,”
Physica A
496
,
548
570
(
2018
).
33.
C.
Bian
,
C.
Qin
,
Q. D. Y.
Ma
, and
Q.
Shen
, “
Modified permutation-entropy analysis of heartbeat dynamics
,”
Phys. Rev. E
85
,
021906
(
2012
).
34.
D.
Cuesta-Frau
,
M.
Varela-Entrecanales
,
A.
Molina-Picó
, and
B.
Vargas
, “
Patterns with equal values in permutation entropy: Do they really matter for biosignal classification
,”
Complexity
2018
,
1324696
.
35.
H. V.
Ribeiro
,
L.
Zunino
,
E. K.
Lenzi
,
P. A.
Santoro
, and
R. S.
Mendes
, “
Complexity-entropy causality plane as a complexity measure for two-dimensional patterns
,”
PLoS One
7
,
e40689
(
2012
).
36.
L.
Zunino
and
H. V.
Ribeiro
, “
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
,”
Chaos, Solitons Fractals
91
,
679
688
(
2016
).
37.
M.
Small
, “Complex networks from time series: Capturing dynamics,” in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013) (IEEE, 2013), pp. 2509–2512.
38.
M.
McCullough
,
M.
Small
,
T.
Stemler
, and
H. H.-C.
Iu
, “
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
,”
Chaos
25
,
053101
(
2015
).
39.
M.
Small
,
M.
McCullough
, and
K.
Sakellariou
, “Ordinal network measures—Quantifying determinism in data,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2018), pp. 1–5.
40.
A. A. B.
Pessa
and
H. V.
Ribeiro
, “
Characterizing stochastic time series with ordinal networks
,”
Phys. Rev. E
100
,
042304
(
2019
).
41.
A. A. B.
Pessa
and
H. V.
Ribeiro
, “
Mapping images into ordinal networks
,”
Phys. Rev. E
102
,
052312
(
2020
).
42.
J. B.
Borges
,
H. S.
Ramos
,
R. A. F.
Mini
,
O. A.
Rosso
,
A. C.
Frery
, and
A. A. F.
Loureiro
, “
Learning and distinguishing time series dynamics via ordinal patterns transition graphs
,”
Appl. Math. Comput.
362
,
124554
(
2019
).
43.
E. T. C.
Chagas
,
A. C.
Frery
,
O. A.
Rosso
, and
H. S.
Ramos
, “Characterization of SAR images with weighted amplitude transition graphs,” in 2020 IEEE Latin American GRSS ISPRS Remote Sensing Conference (LAGIRS) (IEEE, 2020), pp. 264–269.
44.
See https://www.economist.com/leaders/2010/02/25/the-data-deluge for “The Data Deluge” (2010); accessed 20 October 2020.
45.
C. A.
Mattmann
, “
A vision for data science
,”
Nature
493
,
473
475
(
2013
).
46.
D. M.
Blei
and
P.
Smyth
, “
Science and data science
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
8689
8692
(
2017
).
47.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
48.
J. M.
Perkel
, “
Pick up Python
,”
Nature
518
,
125
126
(
2015
).
49.
H.
Shen
, “
Interactive notebooks: Sharing the code
,”
Nature
515
,
151
152
(
2014
).
50.
T.
Kluyver
,
B.
Ragan-Kelley
,
F.
Pérez
,
B.
Granger
,
M.
Bussonnier
,
J.
Frederic
,
K.
Kelley
,
J.
Hamrick
,
J.
Grout
,
S.
Corlay
,
P.
Ivanov
,
D.
Avila
,
S.
Abdalla
,
C.
Willing
, and
Jupyter development team
, “Jupyter notebooks—A publishing format for reproducible computational workflows,” in Positioning and Power in Academic Publishing: Players, Agents and Agendas, edited by F. Loizides and B. Scmidt (IOS Press, 2016), pp. 87–90.
51.
Y.
Cao
,
W.
wen Tung
,
J. B.
Gao
,
V. A.
Protopopescu
, and
L. M.
Hively
, “
Detecting dynamical changes in time series using the permutation entropy
,”
Phys. Rev. E
70
,
046217
(
2004
).
52.
D.
Cuesta-Frau
,
J. P.
Murillo-Escobar
,
D. A.
Orrego
, and
E.
Delgado-Trejos
, “
Embedded dimension and time series length. Practical influence on permutation entropy and its applications
,”
Entropy
21
,
385
(
2019
).
53.
A.
Myers
and
F. A.
Khasawneh
, “
On the automatic parameter selection for permutation entropy
,”
Chaos
30
,
033130
(
2020
).
54.
L.
Zunino
,
F.
Olivares
,
F.
Scholkmann
, and
O. A.
Rosso
, “
Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions
,”
Phys. Lett. A
381
,
1883
1892
(
2017
).
55.
J.
Amigó
,
S.
Zambrano
, and
M. A.
Sanjuán
, “
Combinatorial detection of determinism in noisy time series
,”
EPL
83
,
60005
(
2008
).
56.
O. A.
Rosso
and
C.
Masoller
, “
Detecting and quantifying temporal correlations in stochastic resonance via information theory measures
,”
Eur. Phys. J. B
69
,
37
43
(
2009
).
57.
L.
Zunino
,
M.
Zanin
,
B. M.
Tabak
,
D. G.
Pérez
, and
O. A.
Rosso
, “
Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency
,”
Physica A
389
,
1891
1901
(
2010
).
58.
L.
Zunino
,
A.
Fernández Bariviera
,
M. B.
Guercio
,
L. B.
Martinez
, and
O. A.
Rosso
, “
On the efficiency of sovereign bond markets
,”
Physica A
391
,
4342
4349
(
2012
).
59.
H. V.
Ribeiro
,
L.
Zunino
,
R. S.
Mendes
, and
E. K.
Lenzi
, “
Complexity–entropy causality plane: A useful approach for distinguishing songs
,”
Physica A
391
,
2421
2428
(
2012
).
60.
H. Y. D.
Sigaki
,
R. F.
de Souza
,
R. T.
de Souza
,
R. S.
Zola
, and
H. V.
Ribeiro
, “
Estimating physical properties from liquid crystal textures via machine learning and complexity-entropy methods
,”
Phys. Rev. E
99
,
013311
(
2019
).
61.
R.
López-Ruiz
,
H. L.
Mancini
, and
X.
Calbet
, “
A statistical measure of complexity
,”
Phys. Lett. A
209
,
321
326
(
1995
).
62.
J.
Lin
, “
Divergence measures based on the Shannon entropy
,”
IEEE Trans. Inform. Theory
37
,
145
151
(
1991
).
63.
P. W.
Lamberti
,
M. T.
Martin
,
A.
Plastino
, and
O. A.
Rosso
, “
Intensive entropic non-triviality measure
,”
Physica A
334
,
119
131
(
2004
).
64.
M. T.
Martin
,
A.
Plastino
, and
O. A.
Rosso
, “
Generalized statistical complexity measures: Geometrical and analytical properties
,”
Physica A
369
,
439
462
(
2006
).
65.
J. M.
Amigó
,
L.
Kocarev
, and
J.
Szczepanski
, “
Order patterns and chaos
,”
Phys. Lett. A
355
,
27
31
(
2006
).
66.
C.
Bandt
and
F.
Shiha
, “
Order patterns in time series
,”
J. Time Ser. Anal.
28
,
646
665
(
2007
).
67.
J. M.
Amigó
,
S.
Zambrano
, and
M. A.
Sanjuán
, “
True and false forbidden patterns in deterministic and random dynamics
,”
EPL
79
,
50001
(
2007
).
68.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
New York
,
2009
).
69.
H. Y. D.
Sigaki
,
M.
Perc
, and
H. V.
Ribeiro
, “
History of art paintings through the lens of entropy and complexity
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
E8585
E8594
(
2018
).
70.
See https://www.wikiart.org/en/ad-reinhardt/abstract-painting-blue-1953 for “Abstract Painting: Blue” (accessed 24 November 2020).
71.
See https://www.wikiart.org/en/tarsila-do-amaral/abaporu-1928 for “Abaporu” (accessed 24 November 2020).
72.
See https://www.wikiart.org/en/jackson-pollock/number-1-lavender-mist-1950-1 for “Number 1 (Lavender Mist)” (accessed 24 November 2020).
73.
M.
Zanin
, “
Forbidden patterns in financial time series
,”
Chaos
18
,
013119
(
2008
).
74.
K.
Sakellariou
,
M.
McCullough
,
T.
Stemler
, and
M.
Small
, “
Counting forbidden patterns in irregularly sampled time series. II. Reliability in the presence of highly irregular sampling
,”
Chaos
26
,
123104
(
2016
).
75.
M.
McCullough
,
K.
Sakellariou
,
T.
Stemler
, and
M.
Small
, “
Counting forbidden patterns in irregularly sampled time series. I. The effects of under-sampling, random depletion, and timing jitter
,”
Chaos
26
,
123103
(
2016
).
76.
C. W.
Kulp
,
J. M.
Chobot
,
B. J.
Niskala
, and
C. J.
Needhammer
, “
Using forbidden ordinal patterns to detect determinism in irregularly sampled time series
,”
Chaos
26
,
023107
(
2016
).
77.
C.
Tsallis
, “
Possible generalization of Boltzmann-Gibbs statistics
,”
J. Stat. Phys.
52
,
479
487
(
1988
).
78.
A.
Rényi
, “On measures of entropy and information,” in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (University of California Press, Berkeley, 1961), pp. 547–561.
79.
C.
Tsallis
,
Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World
(
Springer
,
New York
,
2009
).
80.
T.
van Erven
and
P.
Harremos
, “
Rényi divergence and Kullback-Leibler divergence
,”
IEEE Trans. Inform. Theory
60
,
3797
3820
(
2014
).
81.
M.
McCullough
,
M.
Small
,
H. H. C.
Iu
, and
T.
Stemler
, “
Multiscale ordinal network analysis of human cardiac dynamics
,”
Philos. Trans. R. Soc. A
375
,
20160292
(
2017
).
82.
X.
Sun
,
M.
Small
,
Y.
Zhao
, and
X.
Xue
, “
Characterizing system dynamics with a weighted and directed network constructed from time series data
,”
Chaos
24
,
024402
(
2014
).
83.
K.
Sakellariou
,
T.
Stemler
, and
M.
Small
, “
Markov modeling via ordinal partitions: An alternative paradigm for network-based time-series analysis
,”
Phys. Rev. E
100
,
062307
(
2019
).
84.
Y.
Zou
,
R. V.
Donner
,
N.
Marwan
,
J. F.
Donges
, and
J.
Kurths
, “
Complex network approaches to nonlinear time series analysis
,”
Phys. Rep.
787
,
1
97
(
2019
).
85.
M.
Newman
,
Networks: An Introduction
(
Oxford University Press
,
New York
,
2010
).
86.
R. M.
Haralick
,
K.
Shanmugam
, and
I. H.
Dinstein
, “
Textural features for image classification
,”
IEEE Trans. Syst. Man. Cybern.
3
,
610
621
(
1973
).
87.
R. M.
Haralick
, “
Statistical and structural approaches to texture
,”
Proc. IEEE
67
,
786
804
(
1979
).
88.
T. P.
Peixoto
(2014). “The graph-tool Python library,” figshare.
89.
A. A.
Hagberg
,
D. A.
Schult
, and
P. J.
Swart
, “Exploring network structure, dynamics, and function using networkX,” in Proceedings of the 7th Python in Science Conference, Pasadena, CA, edited by G. Varoquaux, T. Vaught, and J. Millman (2008), pp. 11–15, available at https://networkx.org/documentation/stable/citing.html.
90.
G.
Csardi
and
T.
Nepusz
, “
The igraph software package for complex network research
,”
Int. J. Complex Syst.
1695
,
1
9
(
2006
), available at http://www.interjournal.org/manuscript_abstract.php?361100992.
91.
Centre for Research and Applications in Remote Sensing (CARTEL), University of Sherbrooke
, see https://multibandtexture.recherche.usherbrooke.ca/normalized_brodatz.html for “Multiband Texture Database” (accessed 18 December 2020).
92.
C.-K.
Peng
,
S. V.
Buldyrev
,
S.
Havlin
,
M.
Simons
,
H. E.
Stanley
, and
A. L.
Goldberger
, “
Mosaic organization of DNA nucleotides
,”
Phys. Rev. E
49
,
1685
1689
(
1994
).
93.
A.
Safia
and
D.-C.
He
, “
New Brodatz-based image databases for grayscale color and multiband texture analysis
,”
Int. Scholarly Res. Not.
2013
,
14
.
94.
M.
Baker
, “
1,500 scientists lift the lid on reproducibility
,”
Nature
533
,
452
454
(
2016
).
95.
D.
Fanelli
, “
Opinion: Is science really facing a reproducibility crisis, and do we need it to
?”
Proc. Natl. Acad. Sci. U.S.A.
115
,
2628
2631
(
2018
).
96.
R.
Hegger
,
H.
Kantz
, and
T.
Schreiber
, “
Practical implementation of nonlinear time series methods: The TISEAN package
,”
Chaos
9
,
413
435
(
1999
).
97.
J. F.
Donges
,
J.
Heitzig
,
B.
Beronov
,
M.
Wiedermann
,
J.
Runge
,
Q. Y.
Feng
,
L.
Tupikina
,
V.
Stolbova
,
R. V.
Donner
,
N.
Marwan
,
H. A.
Dijkstra
, and
J.
Kurths
, “
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package
,”
Chaos
25
,
113101
(
2015
).
98.
J.
Alstott
,
E.
Bullmore
, and
D.
Plenz
, “
powerlaw: A Python package for analysis of heavy-tailed distributions
,”
PLoS One
9
,
e85777
(
2014
).
99.
A. A. B.
Pessa
and
H. V.
Ribeiro
(2021). “A Python package for data analysis with permutation entropy and ordinal network methods (ordpy),” GitHub. https://github.com/arthurpessa/ordpy; accessed 11 March 2021.
100.
G.
James
,
D.
Witten
,
T.
Hastie
, and
R.
Tibshirani
, An Introduction to Statistical Learning: With Applications in R, Springer Texts in Statistics (Springer, New York, 2014).
101.
A.
Géron
,
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
(
O’Reilly Media
,
Sebastopol
,
2017
).
102.
C. W.
Kulp
,
J. M.
Chobot
,
H. R.
Freitas
, and
G. D.
Sprechini
, “
Using ordinal partition transition networks to analyze ECG data
,”
Chaos
26
,
073114
(
2016
).
103.
M.
Small
, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, World Scientific Series in Nonlinear Science, Series A (World Scientific, Singapore, 2005).
104.
N. H.
Packard
,
J. P.
Crutchfield
,
J. D.
Farmer
, and
R. S.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
716
(
1980
).
105.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
, “
Determining embedding dimension for phase-space reconstruction using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
106.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Physica D
110
,
43
50
(
1997
).
107.
A. M.
Fraser
and
H. L.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
,
1134
1140
(
1986
).
108.
A.
Groth
, “
Visualization of coupling in time series by order recurrence plots
,”
Phys. Rev. E
72
,
046220
(
2005
).
109.
X.
Wang
,
S.
Si
,
Y.
Wei
, and
Y.
Li
, “
The optimized multi-scale permutation entropy and its application in compound fault diagnosis of rotating machinery
,”
Entropy
21
,
170
(
2019
).
110.
M.
McCullough
,
K.
Sakellariou
,
T.
Stemler
, and
M.
Small
, “
Regenerating time series from ordinal networks
,”
Chaos
27
,
035814
(
2017
).
111.
K.
Sakellariou
,
T.
Stemler
, and
M.
Small
, “
Estimating topological entropy using ordinal partition networks
,”
Phys. Rev. E
103
,
022214
(
2021
).
112.
R. M.
May
, “
Simple mathematical models with very complicated dynamics
,”
Nature
261
,
459
467
(
1976
).
113.
L. L.
Trulla
,
A.
Giuliani
,
J. P.
Zbilut
, and
C. L.
Webber
, “
Recurrence quantification analysis of the logistic equation with transients
,”
Phys. Lett. A
223
,
255
260
(
1996
).
114.
H.
Sakai
and
H.
Tokumaru
, “
Autocorrelations of a certain chaos
,”
IEEE Trans. Acoust., Speech, Signal Process.
28
,
588
590
(
1980
).
115.
H. G.
Schuster
and
W.
Just
,
Deterministic Chaos: An Introduction
(
Wiley
,
Weinheim
,
2005
).
116.
O.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
117.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
(
Perseus Books
,
New York
,
1994
).
118.
P.
Virtanen
,
R.
Gommers
,
T. E.
Oliphant
,
M.
Haberland
,
T.
Reddy
,
D.
Cournapeau
,
E.
Burovski
,
P.
Peterson
,
W.
Weckesser
,
J.
Bright
,
S. J.
van der Walt
,
M.
Brett
,
J.
Wilson
,
K.
Jarrod Millman
,
N.
Mayorov
,
A. R. J.
Nelson
,
E.
Jones
,
R.
Kern
,
E.
Larson
,
C.
Carey
,
İ.
Polat
,
Y.
Feng
,
E. W.
Moore
,
J.
Vand erPlas
,
D.
Laxalde
,
J.
Perktold
,
R.
Cimrman
,
I.
Henriksen
,
E. A.
Quintero
,
C. R.
Harris
,
A. M.
Archibald
,
A. H.
Ribeiro
,
F.
Pedregosa
,
P.
van Mulbregt
, and
SciPy 1.0 Contributors
, “
Scipy 1.0: Fundamental algorithms for scientific computing in Python
,”
Nat. Methods
17
,
261
272
(
2020
).
119.
A. F.
Brito
,
J. A.
Redinz
, and
J. A.
Plascak
, “
Dynamics of rough surfaces generated by two-dimensional lattice spin models
,”
Phys. Rev. E
75
,
046106
(
2007
).
120.
A. F.
Brito
,
J. A.
Redinz
, and
J. A.
Plascak
, “
Two-dimensional XY and clock models studied via the dynamics generated by rough surfaces
,”
Phys. Rev. E
81
,
031130
(
2010
).
121.
B. B.
Mandelbrot
and
J. W.
Van Ness
, “
Fractional Brownian motions, fractional noises and applications
,”
SIAM Rev.
10
,
422
437
(
1968
).
122.
J. R. M.
Hosking
, “
Modeling persistence in hydrological time series using fractional differencing
,”
Water Resour. Res.
20
,
1898
1908
, (
1984
).
123.
T.
Diecker
, “Simulation of fractional Brownian motion,” Ph.D. thesis (School University of Twente, 2004).
124.
T.
Diecker
, see http://www.columbia.edu/ad3217/fbm/hosking.c for “hosking.c” (accessed 26 November 2020).
125.
R. F.
Voss
, “1/f (flicker) noise: A brief review,” in 33rd Annual Symposium on Frequency Control (IEEE, 1979), pp. 40–46.
126.
N. J.
Kasdin
, “
Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation
,”
Proc. IEEE
83
,
802
827
(
1995
).
127.
J.
Timmer
and
M.
König
, “
On generating power law noise
,”
Astron. Astrophys.
300
,
707
710
(
1995
), available at http://adsabs.harvard.edu/full/1995A%26A...300..707T.
128.
F.
Patzelt
, see https://github.com/felixpatzelt/colorednoise for “colorednoise.py” (accessed 26 November 2020).
129.
A.
Brazhe
, “
Shearlet-based measures of entropy and complexity for two-dimensional patterns
,”
Phys. Rev. E
97
,
061301
(
2018
).
You do not currently have access to this content.