The clock and wavefront paradigm is arguably the most widely accepted model for explaining the embryonic process of somitogenesis. According to this model, somitogenesis is based upon the interaction between a genetic oscillator, known as segmentation clock, and a differentiation wavefront, which provides the positional information indicating where each pair of somites is formed. Shortly after the clock and wavefront paradigm was introduced, Meinhardt presented a conceptually different mathematical model for morphogenesis in general, and somitogenesis in particular. Recently, Cotterell et al. [A local, self-organizing reaction-diffusion model can explain somite patterning in embryos, Cell Syst. 1, 257-269 (2015)] rediscovered an equivalent model by systematically enumerating and studying small networks performing segmentation. Cotterell et al. called it a progressive oscillatory reaction–diffusion (PORD) model. In the Meinhardt–PORD model, somitogenesis is driven by short-range interactions and the posterior movement of the front is a local, emergent phenomenon, which is not controlled by global positional information. With this model, it is possible to explain some experimental observations that are incompatible with the clock and wavefront model. However, the Meinhardt–PORD model has some important disadvantages of its own. Namely, it is quite sensitive to fluctuations and depends on very specific initial conditions (which are not biologically realistic). In this work, we propose an equivalent Meinhardt–PORD model and then amend it to couple it with a wavefront consisting of a receding morphogen gradient. By doing so, we get a hybrid model between the Meinhardt–PORD and the clock-and-wavefront ones, which overcomes most of the deficiencies of the two originating models.

1.
M.
Maroto
,
R. A.
Bone
, and
J. K.
Dale
, “
Somitogenesis
,”
Development
139
,
2453
2456
(
2012
).
2.
J.
Cooke
and
E.
Zeeman
, “
A clock and wavefront model for control of the number of repeated structures during animal morphogenesis
,”
J. Theor. Biol.
58
,
455
476
(
1976
).
3.
C.
Schröter
,
S.
Ares
,
L. G.
Morelli
,
A.
Isakova
,
K.
Hens
,
D.
Soroldoni
,
M.
Gajewski
,
F.
Jülicher
,
S. J.
Maerkl
,
B.
Deplancke
, and
A. C.
Oates
, “
Topology and dynamics of the zebrafish segmentation clock core circuit
,”
PLoS Biol.
10
,
e1001364
(
2012
).
4.
I.
Palmeirim
,
D.
Henrique
,
D.
Ish-Horowicz
, and
O.
Pourquié
, “
Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis
,”
Cell
91
(
5
),
639
648
(
1997
).
5.
O.
Pourquié
, “
Vertebrate somitogenesis
,”
Annu. Rev. Cell Dev. Biol.
17
(
1
),
311
350
(
2001
).
6.
S.
Gibb
,
M.
Maroto
, and
J. K.
Dale
, “
The segmentation clock mechanism moves up a notch
,”
Trends Cell Biol.
20
,
593
600
(
2010
).
7.
O.
Pourquié
, “
Vertebrate segmentation: From cyclic gene networks to scoliosis
,”
Cell
145
,
650
663
(
2011
).
8.
J.
Dubrulle
,
M. J.
McGrew
, and
O.
Pourquié
, “
FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal hox gene activation
,”
Cell
106
(
2
),
219
232
(
2001
).
9.
L. A.
Naiche
,
N.
Holder
, and
M.
Lewandoski
, “
FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
10
),
4018
4023
(
2011
).
10.
A. S.
Dias
,
I.
de Almeida
,
J. M.
Belmonte
,
J. A.
Glazier
, and
C. D.
Stern
, “
Somites without a clock
,”
Science
343
(
6172
),
791
795
(
2014
).
11.
H.
Meinhardt
,
Models of Biological Pattern Formation
(
Academic Press
,
1982
).
12.
P.
François
and
L.
Jutras-Dubé
, “
Landscape, bifurcations, geometry for development
,”
Curr. Opin. Syst. Biol.
11
,
129
136
(
2018
).
13.
J.
Cotterell
,
A.
Robert-Moreno
, and
J.
Sharpe
, “
A local, self-organizing reaction-diffusion model can explain somite patterning in embryos
,”
Cell Syst.
1
,
257
269
(
2015
).
14.
M.
Santillán
and
M. C.
Mackey
, “
A proposed mechanism for the interaction of the segmentation clock and the determination front in somitogenesis
,”
PLoS One
3
,
e1561
(
2008
).
15.
E.
Zavala
and
M.
Santillán
, “
An analysis of overall network architecture reveals an infinite-period bifurcation underlying oscillation arrest in the segmentation clock
,”
Math. Model. Nat. Phenom.
7
(
6
),
95
106
(
2012
).
16.
M.
Han
and
Z.
Weinian
, “
On Hopf bifurcation in non-smooth planar systems
,”
J. Differ. Equ.
248
,
2399
2416
(
2010
).
17.
J.
Castillo
,
J.
Llibre
, and
F.
Verduzco
, “
The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems
,”
Nonlinear Dyn.
90
(
3
),
1829
1840
(
2017
).
18.
M.
Santillán
, “
On the use of the Hill functions in mathematical models of gene regulatory networks
,”
Math. Model. Nat. Phenom.
3
(
2
),
85
97
(
2008
).
19.
B.
Ermentrout
,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (Software, Environments and Tools)
(
Society for Industrial and Applied Mathematics
,
1987
).
20.
W. C.
Dunty
,
K. K.
Biris
,
R. B.
Chalamalasetty
,
M. M.
Taketo
,
M.
Lewandoski
, and
T. P.
Yamaguchi
, “
Wnt3a/β-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation
,”
Development
135
,
85
94
(
2008
).
21.
A.
Sawada
,
M.
Shinya
,
Y. J.
Jiang
,
A.
Kawakami
,
A.
Kuroiwa
, and
H.
Takeda
, “
Fgf/MAPK signalling is a crucial positional cue in somite boundary formation
,”
Development
128
(
23
),
4873
4880
(
2001
).
22.
L. G.
Morelli
,
S.
Ares
,
L.
Herrgen
,
C.
Schröter
,
F.
Jülicher
, and
A. C.
Oates
, “
Delayed coupling theory of vertebrate segmentation
,”
HFSP J.
3
,
55
66
(
2009
).
23.
P.
François
,
V.
Hakim
, and
E. D.
Siggia
, “
Deriving structure from evolution: Metazoan segmentation
,”
Mol. Syst. Biol.
3
,
154
(
2007
).
24.
A.
Goldbeter
and
O.
Pourquié
, “
Modeling the segmentation clock as a network of coupled oscillations in the notch, Wnt and FGF signaling pathways
,”
J. Theor. Biol.
252
,
574
585
(
2008
).
25.
S. D.
Hester
,
J. M.
Belmonte
,
J. S.
Gens
,
S. G.
Clendenon
, and
J. A.
Glazier
, “
A multi-cell, multi-scale model of vertebrate segmentation and somite formation
,”
PLoS Comput. Biol.
7
,
e1002155
(
2011
).
26.
L.
Jutras-Dubé
,
E.
El-Sherif
, and
P.
François
, “
Geometric models for robust encoding of dynamical information into embryonic patterns
,”
eLife
9
,
e55778
(
2020
).
27.
J.
Pantoja-Hernández
and
M.
Santillán
, “
Segmentation-clock synchronization in circular-lattice networks of embryonic presomitic-mesoderm cells
,”
AIMS Math.
6
(
6
),
5817
5836
(
2021
).
28.
N. A.
Monk
, “
Oscillatory expression of Hes1, p53, and NF-κb driven by transcriptional time delays
,”
Curr. Biol.
13
(
16
),
1409
1413
(
2003
).
29.
J.
Lewis
, “
Autoinhibition with transcriptional delay
,”
Curr. Biol.
13
(
16
),
1398
1408
(
2003
).
30.
C.
Schröter
,
S.
Ares
,
L. G.
Morelli
,
A.
Isakova
,
K.
Hens
,
D.
Soroldoni
,
M.
Gajewski
,
F.
Jülicher
,
S. J.
Maerkl
,
B.
Deplancke
, and
A. C.
Oates
, “
Topology and dynamics of the zebrafish segmentation clock core circuit
,”
PLoS Biol.
10
(
7
),
e1001364
(
2012
).
31.
J. D.
Murray
,
Mathematical Biology
, 2nd ed. (
Springer
,
Oxford
,
1989
).
32.
J. A.
Castillo
,
F.
Sánchez-Garduño
, and
P.
Padilla
, “
A Turing–Hopf bifurcation scenario for pattern formation on growing domains
,”
Bull. Math. Biol.
78
(
7
),
1410
1449
(
2016
).
33.
R.-T.
Liu
,
S.-S.
Liaw
, and
P. K.
Maini
, “
Oscillatory Turing patterns in a simple reaction-diffusion system
,”
J. Korean Phys. Soc.
50
(
1
),
234
238
(
2007
).
You do not currently have access to this content.