Phytophthora is one of the most aggressive and worldwide extended phytopathogens that attack plants and trees. Its effects produce tremendous economical losses in agronomy and forestry since no effective fungicide exists. We propose to combine percolation theory with an intercropping sowing configuration as a non-chemical strategy to minimize the dissemination of the pathogen. In this work, we model a plantation as a square lattice where two types of plants are arranged in alternating columns or diagonals, and Phytophthora zoospores are allowed to propagate to the nearest and next-to-nearest neighboring plants. We determine the percolation threshold for each intercropping configuration as a function of the plant’s susceptibilities and the number of inoculated cells at the beginning of the propagation process. The results are presented as phase diagrams where crop densities that prevent the formation of a spanning cluster of susceptible or diseased plants are indicated. The main result is the existence of susceptibility value combinations for which no spanning cluster is formed even if every cell in the plantation is sowed. This finding can be useful in choosing a configuration and density of plants that minimize damages caused by Phytophthora. We illustrate the application of the phase diagrams with the susceptibilities of three plants with a high commercial value.

1.
A. A.
Saberi
, “
Recent advances in percolation theory and its applications
,”
Phys. Rep.
578
,
1
32
(
2015
).
2.
R. M.
D’Souza
,
J.
Gómez-Gardeñes
,
J.
Nagler
, and
A.
Arenas
, “
Explosive phenomena in complex networks
,”
Adv. Phys.
68
,
123
223
(
2019
).
3.
P. E.
Seiden
and
L. S.
Schulman
, “
Percolation model of galactic structure
,”
Adv. Phys.
39
,
1
54
(
1990
).
4.
M.
Braun
,
J.
Dias de Deus
,
A.
Hirsch
,
C.
Pajares
,
R.
Scharenberg
, and
B.
Srivastava
, “
De-confinement and clustering of color sources in nuclear collisions
,”
Phys. Rep.
599
,
1
50
(
2015
).
5.
I.
Bautista
,
C.
Pajares
, and
J. E.
Ramírez
, “
String percolation in AA and p+p collisions
,”
Rev. Mex. Fis.
65
,
197
223
(
2019
).
6.
S. R.
Broadbent
and
J. M.
Hammersley
, “
Percolation processes: I. Crystals and mazes
,”
Math. Proc. Cambridge Philos. Soc.
53
,
629
641
(
1957
).
7.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor & Francis
,
2014
).
8.
H. L.
Frisch
and
J. M.
Hammersley
, “
Percolation processes and related topics
,”
J. Soc. Ind. Appl. Math.
11
,
894
918
(
1963
).
9.
P.
Grassberger
, “
On the critical behavior of the general epidemic process and dynamical percolation
,”
Math. Biosci.
63
,
157
172
(
1983
).
10.
L.
Sander
,
C.
Warren
,
I.
Sokolov
,
C.
Simon
, and
J.
Koopman
, “
Percolation on heterogeneous networks as a model for epidemics
,”
Math. Biosci.
180
,
293
305
(
2002
).
11.
J. C.
Miller
, “
Percolation and epidemics in random clustered networks
,”
Phys. Rev. E
80
,
020901
(
2009
).
12.
D. S.
Callaway
,
M. E. J.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
, “
Network robustness and fragility: Percolation on random graphs
,”
Phys. Rev. Lett.
85
,
5468
5471
(
2000
).
13.
M. E. J.
Newman
, “
Spread of epidemic disease on networks
,”
Phys. Rev. E
66
,
016128
(
2002
).
14.
N.
Madar
,
T.
Kalisky
,
R.
Cohen
,
D.
ben Avraham
, and
S.
Havlin
, “
Immunization and epidemic dynamics in complex networks
,”
Eur. Phys. J. B
38
,
269
276
(
2004
).
15.
M. W.
Shaw
, “
Modeling stochastic processes in plant pathology
,”
Annu. Rev. Phytopathol.
32
,
523
544
(
1994
), pMID: 19877847.
16.
D. J.
Bailey
,
W.
Otten
, and
C. A.
Gilligan
, “
Saprotrophic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds
,”
New Phytol.
146
,
535
544
(
2000
).
17.
B.
Dybiec
,
A.
Kleczkowski
, and
C. A.
Gilligan
, “
Controlling disease spread on networks with incomplete knowledge
,”
Phys. Rev. E
70
,
066145
(
2004
).
18.
G. J.
Gibson
,
W.
Otten
,
J. A. N.
Filipe
,
A.
Cook
,
G.
Marion
, and
C. A.
Gilligan
, “
Bayesian estimation for percolation models of disease spread in plant populations
,”
Stat. Comput.
16
,
391
402
(
2006
).
19.
W.
Otten
and
C. A.
Gilligan
, “
Soil structure and soil-borne diseases: Using epidemiological concepts to scale from fungal spread to plant epidemics
,”
Eur. J. Soil Sci.
57
,
26
37
(
2006
).
20.
C. C.
Mundt
and
K. E.
Sackett
, “
Spatial scaling relationships for spread of disease caused by a wind-dispersed plant pathogen
,”
Ecosphere
3
,
24
(
2012
).
21.
J. E.
Ramírez
,
E.
Molina-Gayosso
,
J.
Lozada-Lechuga
,
L. M.
Flores-Rojas
,
M. I.
Martínez
, and
A.
Fernández Téllez
, “
Percolation strategy to improve the production of plants with high pathogen susceptibility
,”
Phys. Rev. E
98
,
062409
(
2018
).
22.
J. E.
Ramírez
,
C.
Pajares
,
M. I.
Martínez
,
R.
Rodríguez Fernández
,
E.
Molina-Gayosso
,
J.
Lozada-Lechuga
, and
A.
Fernández Téllez
, “
Site-bond percolation solution to preventing the propagation of Phytophthora zoospores on plantations
,”
Phys. Rev. E
101
,
032301
(
2020
).
23.
D. C.
Erwin
and
O. K.
Ribeiro
,
Phytophthora Diseases Worldwide
[
American Phytopathological Society (APS Press)
,
St. Paul, MN
,
1996
].
24.
T.
Reglinski
,
M.
Spiers
,
J.
Taylor
, and
M.
Dick
, “
Root rot in radiata pine seedlings can be controlled
,”
N. Z. J. For. Sci.
54
,
16
18
(
2010
), available at http://nzjf.org.nz/abstract.php?volume_issue=j54_4&first_page=16.
25.
T.
Jung
,
A. M.
Vettraino
,
T.
Cech
, and
A.
Vannini
, “The impact of invasive Phytopthora species on European forests,” in Phytophthora: A Global Perspective, edited by K. Lamour (CABI, London, 2013), Chap. 16, pp. 146–158.
26.
A. R.
Hardham
and
L. M.
Blackman
, “
Phytophthora cinnamomi
,”
Mol. Plant Pathol.
19
,
260
285
(
2018
).
27.
E.
Bernhardt
and
R.
Grogan
, “
Effect of soil matric potential on the formation and indirect germination of sporangia of Phytophthora parasitica, Phytophthora capsici, and Phytophthora capsici cryptogea rots of tomatoes, Lycopersicon esculentum
,”
Phytopathology
72
,
507–511
(
1982
).
28.
A. R.
Hardham
, “
Phytophthora cinnamomi
,”
Mol. Plant Pathol.
6
,
589
604
(
2005
).
29.
Y.
Cohen
and
M. D.
Coffey
, “
Systemic fungicides and the control of oomycetes
,”
Annu. Rev. Phytopathol.
24
,
311
338
(
1986
).
30.
A.
Drenth
and
D. I.
Gest
, “Phytophthora in the tropics,” in Diversity and Management of Phytophthora in Southeast Asia, edited by A. Drenth and D. I. Gest (ACIAR, 2004), Vol. 114, Chap. Biology of Phytophthora, pp. 30–41.
31.
Y.-J.
Zhang
,
Z.-X.
Wu
,
P.
Holme
, and
K.-C.
Yang
, “
Advantage of being multicomponent and spatial: Multipartite viruses colonize structured populations with lower thresholds
,”
Phys. Rev. Lett.
123
,
138101
(
2019
).
32.
Y.
Hong
,
N.
Heerink
,
S.
Jin
,
P.
Berentsen
,
L.
Zhang
, and
W.
van der Werf
, “
Intercropping and agroforestry in China—Current state and trends
Agr. Ecosyst. Environ.
244
,
52
61
(
2017
).
33.
M.-O.
Martin-Guay
,
A.
Paquette
,
J.
Dupras
, and
D.
Rivest
, “
The new green revolution: Sustainable intensification of agriculture by intercropping
,”
Sci. Total Environ.
615
,
767
772
(
2018
).
34.
A.
Elhakeem
,
W.
van der Werf
,
J.
Ajal
,
D.
Lucà
,
S.
Claus
,
R. A.
Vico
, and
L.
Bastiaans
, “
Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration
,”
Agr. Ecosyst. Environ.
285
,
106627
(
2019
).
35.
A.
Allen-Perkins
and
E.
Estrada
, “
Mathematical modelling for sustainable aphid control in agriculture via intercropping
,”
Proc. R. Soc. A
475
,
20190136
(
2019
).
36.
J. E.
Banks
and
B.
Ekbom
, “
Modelling herbivore movement and colonization: Pest management potential of intercropping and trap cropping
,”
Agric. For. Entomol.
1
,
165
170
(
1999
).
37.
Z.
Xu
,
C.
Li
,
C.
Zhang
,
Y.
Yu
,
W.
van der Werf
, and
F.
Zhang
, “
Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis
,”
Field Crop. Res.
246
,
107661
(
2020
).
38.
H.
Knörzer
,
S.
Graeff-Hönninger
,
B.
Guo
,
P.
Wang
, and
W.
Claupein
, “The rediscovery of intercropping in China: A traditional cropping system for future Chinese agriculture—A review,” in Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, edited by E. Lichtfouse (Springer, 2004), Vol. 2, pp. 13–44.
39.
M.
Gooding
,
E.
Kasyanova
,
R.
Ruske
,
H.
Hauggaard-Nielse
,
E.
Jensen
,
C.
Dahlmann
,
P.
von Fragstein
,
A.
Dibet
,
G.
Corre-Hellou
,
Y.
Crozat
,
A.
Pristeri
,
M.
Romeo
,
M.
Monti
, and
M.
Launay
, “
Intercropping with pulses to concentrate nitrogen and sulphur in wheat
,”
J. Agr. Sci.
145
,
469
479
(
2007
).
40.
D.
Tilman
, “
Benefits of intensive agricultural intercropping
,”
Nat. Plants
6
,
604
(
2020
).
41.
A.
Bermeo
,
S.
Couturier
, and
M.
Galeana Pizaña
, “
Conservation of traditional smallholder cultivation systems in indigenous territories: Mapping land availability for milpa cultivation in the Huasteca Poblana, Mexico
,”
Appl. Geogr.
53
,
299
310
(
2014
).
42.
S.
Serrazina
,
C.
Santos
,
H.
Machado
,
C.
Pesquita
,
R.
Vicentini
,
M. S.
Pais
,
M.
Sebastiana
, and
R.
Costa
, “
Castanea root transcriptome in response to Phytophthora cinnamomi challenge
,”
Tree Genet. Genomes
11
,
6
(
2015
).
43.
J.
Hoshen
and
R.
Kopelman
, “
Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm
,”
Phys. Rev. B
14
,
3438
3445
(
1976
).
44.
M. E. J.
Newman
and
R. M.
Ziff
, “
Efficient Monte Carlo algorithm and high-precision results for percolation
,”
Phys. Rev. Lett.
85
,
4104
4107
(
2000
).
45.
M. E. J.
Newman
and
R. M.
Ziff
, “
Fast Monte Carlo algorithm for site or bond percolation
,”
Phys. Rev. E
64
,
016706
(
2001
).
46.
M. D.
Rintoul
and
S.
Torquato
, “
Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model
,”
J. Phys. A: Math. Gen.
30
,
L585
L592
(
1997
).
47.
A.
Coniglio
, “
Cluster structure near the percolation threshold
,”
J. Phys. A: Math. Gen.
15
,
3829
3844
(
1982
).
48.
T.
Yamano
, “
Some properties of q-logarithm and q-exponential functions in Tsallis statistics
,”
Physica A
305
,
486
496
(
2002
).
49.
K.
Malarz
and
S.
Galam
, “
Square-lattice site percolation at increasing ranges of neighbor bonds
,”
Phys. Rev. E
71
,
016125
(
2005
).
50.
M.
Majewski
and
K.
Malarz
, “
Square lattice site percolation thresholds for complex neighbourhoods
,”
Acta Phys. Pol. B
38
,
2191
(
2007
), available at https://www.actaphys.uj.edu.pl/R/38/6/2191/pdf.
You do not currently have access to this content.