Finding an optimal strategy at a minimum cost to efficiently disintegrate a harmful network into isolated components is an important and interesting problem, with applications in particular to anti-terrorism measures and epidemic control. This paper focuses on optimal disintegration strategies for spatial networks, aiming to find an appropriate set of nodes or links whose removal would result in maximal network fragmentation. We refer to the sum of the degree of nodes and the number of links in a specific region as region centrality. This metric provides a comprehensive account of both topological properties and geographic structure. Numerical experiments on both synthetic and real-world networks demonstrate that the strategy is significantly superior to conventional methods in terms of both effectiveness and efficiency. Moreover, our strategy tends to cover those nodes close to the average degree of the network rather than concentrating on nodes with higher centrality.

1.
M. E.
Newman
, “
The structure and function of complex networks
,”
SIAM Rev.
45
,
167
256
(
2003
).
2.
A.
Vespignani
, “
Twenty years of network science
,”
Nature
558
,
528
529
(
2018
).
3.
H.
Eiselt
, “
Destabilization of terrorist networks
,”
Chaos Solitons Fract.
108
,
111
118
(
2018
).
4.
R.
Pastor-Satorras
,
C.
Castellano
,
P.
Van Mieghem
, and
A.
Vespignani
, “
Epidemic processes in complex networks
,”
Rev. Mod. Phys.
87
,
925
(
2015
).
5.
D.
Anggraini
,
S.
Madenda
,
E. P.
Wibowo
, and
L.
Boumedjout
, “Network disintegration in criminal network,” in 2015 11th International Conference on Signal-Image Technology Internet-Based Systems (SITIS) (IEEE, 2015), pp. 192–199.
6.
S.-Y.
Tan
,
J.
Wu
,
L.
,
M.-J.
Li
, and
X.
Lu
, “
Efficient network disintegration under incomplete information: The comic effect of link prediction
,”
Sci. Rep.
6
,
1
9
(
2016
).
7.
X.-L.
Ren
,
N.
Gleinig
,
D.
Helbing
, and
N.
Antulov-Fantulin
, “
Generalized network dismantling
,”
Proc. Natl. Acad. Sci. U.S.A.
116
,
6554
6559
(
2019
).
8.
Q.
Li
,
S.-Y.
Liu
, and
X.-S.
Yang
, “
Neighborhood information-based probabilistic algorithm for network disintegration
,”
Expert Syst. Appl.
139
,
112853
(
2020
).
9.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,”
Nature
406
,
378
382
(
2000
).
10.
P.
Holme
,
B. J.
Kim
,
C. N.
Yoon
, and
S. K.
Han
, “
Attack vulnerability of complex networks
,”
Phys. Rev. E
65
,
056109
(
2002
).
11.
A.
Arulselvan
,
C. W.
Commander
,
L.
Elefteriadou
, and
P. M.
Pardalos
, “
Detecting critical nodes in sparse graphs
,”
Comput. Oper. Res.
36
,
2193
2200
(
2009
).
12.
S.
Shen
,
J. C.
Smith
, and
R.
Goli
, “
Exact interdiction models and algorithms for disconnecting networks via node deletions
,”
Discrete Optim.
9
,
172
188
(
2012
).
13.
A.-L.
Barabási
and
R.
Albert
, “
Emergence of scaling in random networks
,”
Science
286
,
509
512
(
1999
).
14.
S.
Wandelt
,
X.
Sun
,
D.
Feng
,
M.
Zanin
, and
S.
Havlin
, “
A comparative analysis of approaches to network-dismantling
,”
Sci. Rep.
8
,
1
15
(
2018
).
15.
Y.
Shang
, “
Generalized k-core percolation on correlated and uncorrelated multiplex networks
,”
Phys. Rev. E
101
,
042306
(
2020
).
16.
D. S.
Lekha
and
K.
Balakrishnan
, “
Central attacks in complex networks: A revisit with new fallback strategy
,”
Physica A
549
,
124347
(
2020
).
17.
Y.
Yang
,
J.
Zhou
, and
C.
Bu
, “
Equitable partition and star set formulas for the subgraph centrality of graphs
,”
Linear Multilinear Algebra
2020
,
1
9
(
2020
).
18.
F.
Morone
and
H. A.
Makse
, “
Influence maximization in complex networks through optimal percolation
,”
Nature
524
,
65
68
(
2015
).
19.
S.
Mugisha
and
H.-J.
Zhou
, “
Identifying optimal targets of network attack by belief propagation
,”
Phys. Rev. E
94
,
012305
(
2016
).
20.
H.-J.
Zhou
, “
Spin glass approach to the feedback vertex set problem
,”
Eur. Phys. J. B
86
,
455
(
2013
).
21.
M.
Šimon
,
I.
Dirgová Luptáková
,
L.
Huraj
,
M.
Host’oveckỳ
, and
J.
Pospíchal
, “
Combined heuristic attack strategy on complex networks
,”
Math. Probl. Eng.
2017
,
1
9
(
2017
).
22.
L.
Zdeborová
,
P.
Zhang
, and
H.-J.
Zhou
, “
Fast and simple decycling and dismantling of networks
,”
Sci. Rep.
6
,
37954
(
2016
).
23.
A.
Braunstein
,
L.
Dall’Asta
,
G.
Semerjian
, and
L.
Zdeborová
, “
Network dismantling
,”
Proc. Natl. Acad. Sci. U.S.A.
113
,
12368
12373
(
2016
).
24.
Y.
Deng
,
J.
Wu
, and
Y.-J.
Tan
, “
Optimal attack strategy of complex networks based on tabu search
,”
Physica A
442
,
74
81
(
2016
).
25.
Y.
Yu
,
Y.
Deng
,
S.-Y.
Tan
, and
J.
Wu
, “
Efficient disintegration strategy in directed networks based on tabu search
,”
Physica A
507
,
435
442
(
2018
).
26.
M.
Qi
,
Y.
Deng
,
H.
Deng
, and
J.
Wu
, “
Optimal disintegration strategy in multiplex networks
,”
Chaos
28
,
121104
(
2018
).
27.
Y.
Deng
,
J.
Wu
,
M.
Qi
, and
Y.
Tan
, “
Optimal disintegration strategy in spatial networks with disintegration circle model
,”
Chaos
29
,
061102
(
2019
).
28.
M.
Ventresca
, “
Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem
,”
Comput. Oper. Res.
39
,
2763
2775
(
2012
).
29.
Y.
Deng
,
J.
Wu
,
Y.
Xiao
,
M.
Zhang
,
Y.
Yu
, and
Y.
Zhang
, “
Optimal disintegration strategy with heterogeneous costs in complex networks
,”
IEEE Trans. Syst. Man Cybern. Syst.
50
,
2905
2913
(
2018
).
30.
C.
Fan
,
L.
Zeng
,
Y.
Sun
, and
Y.-Y.
Liu
, “
Finding key players in complex networks through deep reinforcement learning
,”
Nat. Mach. Intell.
2
,
317
324
(
2020
).
31.
M.
Barthélemy
, “
Spatial networks
,”
Phys. Rep.
499
,
1
101
(
2011
).
32.
T.
Anderson
and
S.
Dragićević
, “
Complex spatial networks: Theory and geospatial applications
,”
Geogr. Compass
14
,
e12502
(
2020
).
33.
S.
Neumayer
,
G.
Zussman
,
R.
Cohen
, and
E.
Modiano
, “
Assessing the vulnerability of the fiber infrastructure to disasters
,”
IEEE ACM Trans. Netw.
19
,
1610
1623
(
2011
).
34.
S.
Neumayer
and
E.
Modiano
, “
Network reliability under geographically correlated line and disk failure models
,”
Comput. Netw.
94
,
14
28
(
2016
).
35.
P. K.
Agarwal
,
A.
Efrat
,
S. K.
Ganjugunte
,
D.
Hay
,
S.
Sankararaman
, and
G.
Zussman
, “Network vulnerability to single, multiple, and probabilistic physical attacks,” in 2010—MILCOM 2010 Military Communications Conference (IEEE, 2010), pp. 1824–1829.
36.
P. K.
Agarwal
,
A.
Efrat
,
S. K.
Ganjugunte
,
D.
Hay
,
S.
Sankararaman
, and
G.
Zussman
, “
The resilience of WDM networks to probabilistic geographical failures
,”
IEEE ACM Trans. Netw.
21
,
1525
1538
(
2013
).
37.
W.
Peng
,
Z.
Li
,
Y.
Liux
, and
J.
Su
, “
Assessing the vulnerability of network topologies under large-scale regional failures
,”
J. Commun. Netw.
14
,
451
460
(
2012
).
38.
D.
Ye
,
W.
Jun
,
X.
Yu
, and
L.
Yapeng
, “
Efficient disintegration strategies with cost constraint in complex networks: The crucial role of nodes near average degree
,”
Chaos
28
,
061101
(
2018
).
39.
P.
Erdos
and
A.
Renyi
, “
On the evolution of random graphs
,”
Bull. Inst. Internat. Statist
38
,
343
347
(
1960
).
40.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
41.
M.
Jacomy
,
T.
Venturini
,
S.
Heymann
, and
M.
Bastian
, “
Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software
,”
PLoS One
9
,
e98679
(
2014
).
42.
C.
Han
,
D.
Witthaut
,
M.
Timme
, and
M.
Schröder
, “
The winner takes it all—Competitiveness of single nodes in globalized supply networks
,”
PLoS One
14
,
e0225346
(
2019
).
43.
F.
Radicchi
and
C.
Castellano
, “
Leveraging percolation theory to single out influential spreaders in networks
,”
Phys. Rev. E
93
,
062314
(
2016
).
You do not currently have access to this content.