Network performance of neurons plays a vital role in determining the behavior of many physiological systems. In this paper, we discuss the wave propagation phenomenon in a network of neurons considering obstacles in the network. Numerous studies have shown the disastrous effects caused by the heterogeneity induced by the obstacles, but these studies have been mainly discussing the orientation effects. Hence, we are interested in investigating the effects of both the size and orientation of the obstacles in the wave re-entry and spiral wave formation in the network. For this analysis, we have considered two types of neuron models and a pancreatic beta cell model. In the first neuron model, we use the well-known differential equation-based neuron models, and in the second type, we used the hybrid neuron models with the resetting phenomenon. We have shown that the size of the obstacle decides the spiral wave formation in the network and horizontally placed obstacles will have a lesser impact on the wave re-entry than the vertically placed obstacles.

1.
B.
Bao
,
Q.
Yang
,
L.
Zhu
 et al, “
Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris–Lecar model and microcontroller-based validations
,”
Int. J. Bifurcat. Chaos
29
(
10
),
1950134
(
2019
).
2.
H.
Bao
,
A.
Hu
,
W.
Liu
 et al, “
Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction
,”
IEEE Trans. Neural Netw. Learn. Syst.
31
(
2
),
502
511
(
2019
).
3.
J.
Rinzel
, “
A formal classification of bursting mechanisms in excitable systems,”
in
Mathematical Topics in Population Biology, Morphogenesis and Neurosciences
, Lecture Notes in Biomathematics Vol. 71 (Springer,
1987
), pp.
267
281
.
4.
A.
Skarda
and
J.
Freeman
, “
Chaos and the new science of the brain
,”
Concepts Neurosci.
1
,
275–285
(
1990
).
5.
M.
Davidenko J
,
V.
Pertsov A
,
R.
Salomonsz
 et al, “
Stationary and drifting spiral waves of excitation in isolated cardiac muscle
,”
Nature
355
,
349
351
(
1992
).
6.
J. G.
Milton
,
P. H.
Chu
, and
J. D.
Cowan
, “
Spiral waves in integrate-and-fire neural networks
,” in
NIPS'92: Proceedings of the 5th International Conference on Neural Information Processing Systems November 1992
, pp. 1001–1006.
7.
J. C.
Principe
,
A.
Rathie
, and
J. M.
Kuo
, “
Prediction of chaotic time series with neural networks and the issue of dynamic modeling
,”
Int. J. Bifurcat. Chaos
2
,
989
996
(
1992
).
8.
K.
Kaneko
,
Theory and Applications of Coupled Map Lattices
(
Wiley
,
New York
,
1993
).
9.
A. J.
Koch
and
H.
Meinhardt
, “
Biological pattern formation: From basic mechanisms to complex structures
,”
Rev. Mod. Phys.
66
,
1481
1507
(
1994
).
10.
J. M.
Starobin
,
Y. I.
Zilberter
,
E. M.
Rusnak
 et al, “
Wavelet formation in excitable cardiac tissue: The role of wavefront-obstacle interactions in initiating high-frequency fibrillatory-like arrhythmias
,”
Biophys. J.
70
,
581
594
(
1996
).
11.
A.
Kotini
and
P. A.
Anninos
, “
Dynamics of noisy neural nets with chemical markers and Gaussian-distributed connectivities
,”
Connect. Sci.
9
,
381
404
(
1997
).
12.
A. V.
Panfilov
, “
Spiral breakup as a model of ventricular fibrillation
,”
Chaos
8
,
57
64
(
1998
).
13.
M. T.
Grekhova
, “
Autowave processes in systems with diffusion
,”
USSR: Gorki Acad. Sci.
59
, 1434–1453 (
1981
).
14.
Y.
Gong
and
D. J.
Christini
, “
Antispiral waves in reaction–diffusion systems
,”
Phys. Rev. Lett.
2003
,
088302
.
15.
Y.
Kuramoto
and
S.
Shima
, “
Rotating spirals without phase singularity in reaction-diffusion systems
,”
Progr. Theor. Phys. Suppl.
150
,
115
125
(
2003
).
16.
D.
Mahanta
,
N. P.
Das
, and
S.
Dutta
, “
Spirals in a reaction–diffusion system: Dependence of wave dynamics on excitability
,”
Phys. Rev. E
97
(
2
),
022206
(
2018
).
17.
X.
Huang
,
W.
Xu
,
J.
Liang
 et al, “
Spiral wave dynamics in neocortex
,”
Neuron
68
(
5
),
978
990
(
2010
).
18.
R. A.
Gray
,
A. M.
Pertsov
, and
J.
Jalife
, “
Spatial and temporal organization during cardiac fibrillation
,”
Nature
392
,
75
78
(
1998
).
19.
J.
Ma
,
B.
Hu
,
C.
Wang
 et al, “
Simulating the formation of spiral wave in the neuronal system
,”
Nonlinear Dyn.
73
,
73
(
2013
).
20.
J.
Ma
,
F.
Wu
,
T.
Hayat
 et al, “
Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media
,”
Physica A
486
,
508
516
(
2017
).
21.
F.
Wu
,
C.
Wang
,
Y.
Xu
 et al, “
Model of electrical activity in cardiac tissue under electromagnetic induction
,”
Sci. Rep.
6
,
28
(
2016
).
22.
J.
Ma
,
Z.
Yang
,
L.
Yang
 et al, “
A physical view of computational neurodynamics
,”
J. Zhejiang Univ., Sci., A
20
(
9
),
639
659
(
2019
).
23.
V.
Perez-
Munuzuri
,
A. P.
Munuzuri
,
M.
Gómez-Gezteira
 et al, “
Nonlinear waves, patterns and sptiotemporal chaos in cellular neural network
,”
Philos. Trans. R. Soc., A
353
(
1701
),
101
113
(
1995
).
24.
G. B.
Ermentrout
and
J. B.
McLeod
, “
Existence and uniqueness of travelling waves for a neural network
,”
Proc. R. Soc. Edinb.
123
,
461
478
(
1993
).
25.
G.
Bub
,
A.
Shrier
, and
L.
Glass
, “
Spiral wave generation in heterogeneous excitable media
,”
Phys. Rev. Lett.
88
(
5
),
058101
(
2002
).
26.
C.
Lenk
,
M.
Einax
, and
P.
Maass
, “
Wavefront-obstacle and wavefront-wavefront interactions as mechanisms for atrial fibrillation: A study based on the FitzHugh-Nagumo equations
,” in
Computing in Cardiology
(
IEEE
,
2010
), pp.
425
428
.
27.
E. M.
Azene
,
N. A.
Trayanova
, and
E.
Warman
, “
Wave front–obstacle interactions in cardiac tissue: A computational study
,”
Ann. Biomed. Eng.
29
(
1
),
35
46
(
2001
).
28.
I. V.
Kazbanov
,
K. H. W. J.
Ten Tusscher
, and
A. V.
Panfilov
, “
Effects of heterogeneous diffuse fibrosis on arrhythmia dynamics and mechanism
,”
Sci. Rep.
6
(
1
),
20835
(
2016
).
29.
H.
Schmidt
,
A.
Hutt
, and
L.
Schimansky-Geier
, “
Wave fronts in inhomogeneous neural field models
,”
Physica D
238
(
14
),
1101
1112
(
2009
).
30.
Z.
Rostami
,
K.
Rajagopal
,
J. M.
Khalaf A
 et al, “
Wavefront-obstacle interactions and the initiation of reentry in excitable media
,”
Physica A
509
,
1162
1173
(
2018
).
31.
F.
Parastesh
,
K.
Rajagopal
,
F. E.
Alsaadi
 et al, “
Birth and death of spiral waves in a network of Hindmarsh-Rose neurons with exponential magnetic flux and excitable media
,”
Appl. Math. Comput.
354
,
377
384
(
2019
).
32.
K.
Rajagopal
,
I.
Moroz
,
A.
Karthikeyan
 et al, “
Wave propagation in a network of extended Morris–Lecar neurons with electromagnetic induction and its local kinetics
,”
Nonlinear Dyn.
100
,
3625
3644
(
2020
).
33.
K.
Rajagopal
,
Z.
Wei
,
I.
Moroz
 et al, “
Elimination of spiral waves in a one-layer and two-layer network of pancreatic beta cells using a periodic stimuli
,”
Chaos, Solitons Fractals
139
,
110093
(
2020
).
34.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc. London, Ser. B
221
,
87
102
(
1984
).
You do not currently have access to this content.