In this research paper, a novel approach in dengue modeling with the asymptomatic carrier and reinfection via the fractional derivative is suggested to deeply interrogate the comprehensive transmission phenomena of dengue infection. The proposed system of dengue infection is represented in the Liouville–Caputo fractional framework and investigated for basic properties, that is, uniqueness, positivity, and boundedness of the solution. We used the next-generation technique in order to determine the basic reproduction number R0 for the suggested model of dengue infection; moreover, we conduct a sensitivity test of R0 through a partial rank correlation coefficient technique to know the contribution of input factors on the output of R0. We have shown that the infection-free equilibrium of dengue dynamics is globally asymptomatically stable for R0<1 and unstable in other circumstances. The system of dengue infection is then structured in the Atangana–Baleanu framework to represent the dynamics of dengue with the non-singular and non-local kernel. The existence and uniqueness of the solution of the Atangana–Baleanu fractional system are interrogated through fixed-point theory. Finally, we present a novel numerical technique for the solution of our fractional-order system in the Atangana–Baleanu framework. We obtain numerical results for different values of fractional-order ϑ and input factors to highlight the consequences of fractional-order ϑ and input parameters on the system. On the basis of our analysis, we predict the most critical parameters in the system for the elimination of dengue infection.

1.
K.
Wellekens
,
A.
Betrains
,
P.
De Munter
, and
W.
Peetermans
, “
Dengue: Current state one year before WHO 2010–2020 goals
,”
Acta Clin. Belg.
2020
,
1
9
(
2020
).
2.
D. J.
Gubler
, “
Dengue and dengue hemorrhagic fever
,”
Clin. Microbiol. Rev.
11
(
3
),
480
496
(
1998
).
3.
M. G.
Guzman
,
G.
Kouri
,
J.
Bravo
,
L.
Valdes
,
V.
Susana
, and
S. B.
Halstead
, “
Effect of age on outcome of secondary dengue 2 infections
,”
Int. J. Infect. Dis.
6
(
2
),
118
124
(
2002
).
4.
S.
East
, “World’s first dengue fever vaccine launched in the Philippines,” CNN (archived from the original on April 6, 2016).
5.
See https://www.cdc.gov/dengue/epidemiology/index.html for Epidemiology (accessed 7 March 2018).
6.
Y.
Xiao
,
T.
Zhao
, and
S.
Tang
, “
Dynamics of an infectious diseases with media/psychology induced non-smooth incidence
,”
Math. Biosci. Eng.
10
(
2
),
445
(
2013
).
7.
F.
Ndaïrou
,
I.
Area
,
J. J.
Nieto
,
C. J.
Silva
, and
D. F.
Torres
, “
Fractional model of COVID-19 applied to Galicia, Spain and Portugal
,”
Chaos, Solitons Fractals
144
,
110652
(
2021
).
8.
L.
Esteva
and
C.
Vargas
, “
Analysis of a dengue disease transmission model
,”
Math. Biosci.
150
(
2
),
131
151
(
1998
).
9.
L.
Esteva
and
C.
Vargas
, “
A model for dengue disease with variable human population
,”
J. Math. Biol.
38
(
3
),
220
240
(
1999
).
10.
M.
Derouich
,
A.
Boutayeb
, and
E. H.
Twizell
, “
A model of dengue fever
,”
Biomed. Eng. Online
2
(
1
),
4
(
2003
).
11.
R.
Jan
and
A.
Jan
, “
MSGDTM for solution of fractional order dengue disease model
,”
Int. J. Sci. Res.
6
(
3
),
1140
1144
(
2017
).
12.
R.
Jan
and
Y.
Xiao
, “
Effect of pulse vaccination on dynamics of dengue with periodic transmission functions
,”
Adv. Differ. Equ.
2019
(
1
),
368
.
13.
J. J.
Tewa
,
J. L.
Dimi
, and
S.
Bowong
, “
Lyapunov functions for a dengue disease transmission model
,”
Chaos, Solitons Fractals
39
(
2
),
936
941
(
2009
).
14.
H. S.
Rodrigues
,
M. T. T.
Monteiro
, and
D. F.
Torres
, “
Vaccination models and optimal control strategies to dengue
,”
Math. Biosci.
247
,
1
12
(
2014
).
15.
R.
Jan
and
Y.
Xiao
, “
Effect of partial immunity on transmission dynamics of dengue disease with optimal control
,”
Math. Methods Appl. Sci.
42
(
6
),
1967
1983
(
2019
).
16.
D. S.
Burke
,
A.
Nisalak
,
D. E.
Johnson
, and
R. M.
Scott
, “
A prospective study of dengue infections in Bangkok
,”
Am. J. Trop. Med. Hyg.
38
(
1
),
172
180
(
1988
).
17.
T. P.
Endy
,
S.
Chunsuttiwat
,
A.
Nisalak
,
D. H.
Libraty
,
S.
Green
,
A. L.
Rothman
,
D. W.
Vaughn
, and
F. A.
Ennis
, “
Epidemiology of inapparent and symptomatic acute dengue virus infection: A prospective study of primary school children in Kamphaeng Phet, Thailand
,”
Am. J. Epidemiol.
156
(
1
),
40
51
(
2002
).
18.
L. F.
Chaves
,
L. C.
Harrington
,
C. L.
Keogh
,
A. M.
Nguyen
, and
U. D.
Kitron
, “
Blood feeding patterns of mosquitoes: Random or structured?
,”
Front. Zool.
7
(
1
),
3
(
2010
).
19.
C.
Vinauger
,
L.
Buratti
, and
C. R.
Lazzari
, “
Learning the way to blood: First evidence of dual olfactory conditioning in a blood-sucking insect, Rhodnius prolixus. I. Appetitive learning
,”
J. Exp. Biol.
214
(
18
),
3032
3038
(
2011
).
20.
M.
Caputo
and
M.
Fabrizio
, “
A new definition of fractional derivative without singular kernel
,”
Progr. Fract. Differ. Appl.
1
(
2
),
73
85
(
2015
).
21.
B. S. T.
Alkahtani
, “
Chua’s circuit model with Atangana-Baleanu derivative with fractional order
,”
Chaos, Solitons Fractals
89
,
547
551
(
2016
).
22.
T.
Das
,
U.
Ghosh
,
S.
Sarkar
, and
S.
Das
, “
Higher-dimensional fractional time-independent Schrödinger equation via fractional derivative with generalised pseudoharmonic potential
,”
Pramana
93
(
5
),
1
(
2019
).
23.
F.
Fatmawati
,
R.
Jan
,
M. A.
Khan
,
Y.
Khan
, and
S.
Ullah
, “
A new model of dengue fever in terms of fractional derivative
,”
Math. Biosci. Eng.
17
(
5
),
5267
5287
(
2020
).
24.
H.
Singh
,
H. M.
Srivastava
,
Z.
Hammouch
, and
K. S.
Nisar
, “
Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19
,”
Res. Phys.
20
,
103722
(
2021
).
25.
M.
Al-Raeei
and
M. S.
El-Daher
, “
An iteration algorithm for the time-independent fractional Schrödinger equation with Coulomb potential
,”
Pramana
94
(
1
),
1
(
2020
).
26.
C. J.
Song
, “
Noether symmetry for fractional Hamiltonian system
,”
Phys. Lett. A
383
(
29
),
125914
(
2019
).
27.
B.
Oblak
and
G.
Kozyreff
, “
Berry phases in the reconstructed KdV equation
,”
Chaos
30
(
11
),
113114
(
2020
).
28.
H. M.
Srivastava
and
K. M.
Saad
, “
Numerical simulation of the fractal-fractional Ebola virus
,”
Fractal Fract.
4
(
4
),
49
(
2020
).
29.
A.
Kilicman
, “
A fractional order SIR epidemic model for dengue transmission
,”
Chaos, Solitons Fractals
114
,
55
62
(
2018
).
30.
H. M.
Srivastava
,
K. M.
Saad
, and
M. M.
Khader
, “
An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus
,”
Chaos, Solitons Fractals
140
,
110174
(
2020
).
31.
H. M.
Srivastava
,
K. M.
Saad
,
J. F.
Gómez-Aguilar
, and
A. A.
Almadiy
, “
Some new mathematical models of the fractional-order system of human immune against IAV infection
,”
Math. Biosci. Eng.
17
(
5
),
4942
4969
(
2020
).
32.
H. M.
Srivastava
,
V. P.
Dubey
,
R.
Kumar
,
J.
Singh
,
D.
Kumar
, and
D.
Baleanu
, “
An efficient computational approach for a fractional-order biological population model with carrying capacity
,”
Chaos, Solitons Fractals
138
,
109880
(
2020
).
33.
H. M.
Srivastava
,
R.
Shanker Dubey
, and
M.
Jain
, “
A study of the fractional-order mathematical model of diabetes and its resulting complications
,”
Math. Methods Appl. Sci.
42
(
13
),
4570
4583
(
2019
).
34.
A.
Jajarmi
,
S.
Arshad
, and
D.
Baleanu
, “
A new fractional modelling and control strategy for the outbreak of dengue fever
,”
Physica A
535
,
122524
(
2019
).
35.
S.
Qureshi
and
A.
Atangana
, “
Mathematical analysis of dengue fever outbreak by novel fractional operators with field data
,”
Physica A
526
,
121127
(
2019
).
36.
H.
Al-Sulami
,
M.
El-Shahed
,
J. J.
Nieto
, and
W.
Shammakh
, “
On fractional order dengue epidemic model
,”
Math. Probl. Eng.
2014
,
456537
.
37.
M.
Abdulhameed
,
D.
Vieru
, and
R.
Roslan
, “
Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes
,”
Comput. Math. Appl.
74
(
10
),
2503
2519
(
2017
).
38.
A.
Atangana
and
D.
Baleanu
, “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model,” arXiv:1602.03408 (2016).
39.
D.
Baleanu
,
A.
Jajarmi
,
E.
Bonyah
, and
M.
Hajipour
, “
New aspects of poor nutrition in the life cycle within the fractional calculus
,”
Adv. Differ. Equ.
2018
(
1
),
1
.
40.
A.
Atangana
and
I.
Koca
, “
Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order
,”
Chaos, Solitons Fractals
89
,
447
454
(
2016
).
41.
K.
Diethelm
,
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
(
Springer Science & Business Media
,
2010
).
42.
J.
Huo
,
H.
Zhao
, and
L.
Zhu
, “
The effect of vaccines on backward bifurcation in a fractional order HIV model
,”
Nonlinear Anal. Real World Appl.
26
,
289
305
(
2015
).
43.
Z. M.
Odibat
and
N. T.
Shawagfeh
, “
Generalized Taylor’s formula
,”
Appl. Math. Comput.
186
(
1
),
286
293
(
2007
).
44.
B.
Acay
,
A.
Khan
, and
A.
Yusuf
, “
Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator
,”
J. Appl. Math. Comput.
2021
(
1
),
1
29
(
2021
).
45.
A.
Yusuf
,
B.
Acay
,
U. T.
Mustapha
,
M.
Inc
, and
D.
Baleanu
, “
Mathematical modeling of pine wilt disease with caputo fractional operator
,”
Chaos, Solitons Fractals
143
,
110569
(
2021
).
46.
M.
Inc
,
B.
Acay
,
H. W.
Berhe
,
A.
Yusuf
,
A.
Khan
, and
S. W.
Yao
, “
Analysis of novel fractional COVID-19 model with real-life data application
,”
Res. Phys.
23
,
103968
(
2021
).
47.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory and Applications of Fractional Differential Equations
(
Elsevier
,
2006
), Vol. 204.
48.
H. M.
Srivastava
, “
Fractional-order derivatives and integrals: Introductory overview and recent developments
,”
Kyungpook Math. J.
60
(
1
),
73
116
(
2020
).
49.
X.
Ye
and
C.
Xu
, “
A fractional order epidemic model and simulation for avian influenza dynamics
,”
Math. Methods Appl. Sci.
42
(
14
),
4765
4779
(
2019
).
50.
D.
Matignon
, “Stability results for fractional differential equations with applications to control processing,” in Computational Engineering in Systems Applications (IEEE-SMC, 1996), Vol. 2, No. 1, pp. 963–968.
51.
S.
Syafruddin
and
M. S. M.
Noorani
, “
SEIR model for transmission of dengue fever
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
2
(
5
),
341
345
(
2012
).
52.
C.
Li
and
Y.
Ma
, “
Fractional dynamical system and its linearization theorem
,”
Nonlinear Dyn.
71
(
4
),
621
633
(
2013
).
53.
Z.
Wang
,
D.
Yang
,
T.
Ma
, and
N.
Sun
, “
Stability analysis for nonlinear fractional-order systems based on comparison principle
,”
Nonlinear Dyn.
75
(
1-2
),
387
402
(
2014
).
54.
M.
Toufik
and
A.
Atangana
, “
New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models
,”
Eur. Phys. J. Plus
132
(
10
),
444
(
2017
).
You do not currently have access to this content.