The interconnectivity between constituent nodes gives rise to cascading failure in most dynamic networks, such as a traffic jam in transportation networks and a sweeping blackout in power grid systems. Basin stability (BS) has recently garnered tremendous traction to quantify the reliability of such dynamical systems. In power grid networks, it quantifies the capability of the grid to regain the synchronous state after being perturbated. It is noted that detection of the most vulnerable node or generator with the lowest BS or N1 reliability is critical toward the optimal decision making on maintenance. However, the conventional estimation of BS relies on the Monte Carlo (MC) method to separate the stable and unstable dynamics originated from the perturbation, which incurs immense computational cost particularly for large-scale networks. As the BS estimate is in essence a classification problem, we investigate the relevance vector machine and active learning to locate the boundary of stable dynamics or the basin of attraction in an efficient manner. This novel approach eschews the large number of sampling points in the MC method and reduces over 95% of the simulation cost in the assessment of N1 reliability of power grid networks.

1.
R.
Smith
, “
How America could go dark
,”
Wall St. J.
(published online, 2016), available at https://www.wsj.com/articles/how-america-could-go-dark-1468423254.
2.
M.
Pavella
,
D.
Ernst
, and
D.
Ruiz-Vega
,
Transient Stability of Power Systems: A Unified Approach to Assessment and Control
(
Springer Science & Business Media
,
2012
).
3.
F.
Dorfler
and
F.
Bullo
, “
Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators
,”
SIAM J. Control Optim.
50
(
3
),
1616
1642
(
2012
).
4.
R.
Zárate-Miñano
,
T.
Van Cutsem
,
F.
Milano
, and
A. J.
Conejo
, “
Securing transient stability using time-domain simulations within an optimal power flow
,”
IEEE Trans. Power Syst.
25
(
1
),
243
253
(
2009
).
5.
M.
Malisoff
and
F.
Mazenc
,
Constructions of Strict Lyapunov Functions
(
Springer Science & Business Media
,
2009
).
6.
P. J.
Menck
,
J.
Heitzig
,
N.
Marwan
, and
J.
Kurths
, “
How basin stability complements the linear-stability paradigm
,”
Nat. Phys.
9
(
2
),
89
(
2013
).
7.
L.
Da Silveira Lobo Sternberg
, “
Savanna-forest hysteresis in the tropics
,”
Global Ecol. Biogeogr.
10
(
4
),
369
378
(
2001
).
8.
M.
Hirota
,
M.
Holmgren
,
E. H.
Van Nes
, and
M.
Scheffer
, “
Global resilience of tropical forest and savanna to critical transitions
,”
Science
334
(
6053
),
232
235
(
2011
).
9.
R. M.
May
, “
Thresholds and breakpoints in ecosystems with a multiplicity of stable states
,”
Nature
269
(
5628
),
471
(
1977
).
10.
Y.
Che
,
C.
Cheng
,
Z.
Liu
, and
Z. J.
Zhang
, “
Fast basin stability estimation for dynamic systems under large perturbations with sequential support vector machine
,”
Physica D
405
,
132381
(
2020
).
11.
P.
Brzeski
,
J.
Wojewoda
,
T.
Kapitaniak
,
J.
Kurths
, and
P.
Perlikowski
, “
Sample-based approach can outperform the classical dynamical analysis-experimental confirmation of the basin stability method
,”
Sci. Rep.
7
(
1
),
1
10
(
2017
).
12.
P. J.
Menck
,
J.
Heitzig
,
J.
Kurths
, and
H. J.
Schellnhuber
, “
How dead ends undermine power grid stability
,”
Nat. Commun.
5
,
3969
(
2014
).
13.
C.
Mitra
,
A.
Choudhary
,
S.
Sinha
,
J.
Kurths
, and
R. V.
Donner
, “
Multiple-node basin stability in complex dynamical networks
,”
Phys. Rev. E
95
(
3
),
032317
(
2017
).
14.
F.
Dörfler
,
M.
Chertkov
, and
F.
Bullo
, “
Synchronization in complex oscillator networks and smart grids
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
6
),
2005
2010
(
2013
).
15.
S. V.
Buldyrev
,
R.
Parshani
,
G.
Paul
,
H. E.
Stanley
, and
S.
Havlin
, “
Catastrophic cascade of failures in interdependent networks
,”
Nature
464
(
7291
),
1025
1028
(
2010
).
16.
B. C.
Coutinho
,
A. V.
Goltsev
,
S. N.
Dorogovtsev
, and
J. F. F.
Mendes
, “
Kuramoto model with frequency-degree correlations on complex networks
,”
Phys. Rev. E
87
(
3
),
032106
(
2013
).
17.
H.
Taher
,
S.
Olmi
, and
E.
Schöll
, “
Enhancing power grid synchronization and stability through time-delayed feedback control
,”
Phys. Rev. E
100
(
6
),
062306
(
2019
).
18.
M. E.
Tipping
, “
Sparse Bayesian learning and the relevance vector machine
,”
J. Mach. Learn. Res.
1
,
211
244
(
2001
).
19.
Y.
Che
,
J.
Liu
, and
C.
Cheng
, “
Multi-fidelity modeling in sequential design for stability identification in dynamic time-delay systems
,”
Chaos
29
(
9
),
093105
(
2019
).
20.
D. J.
MacKay
, “
The evidence framework applied to classification networks
,”
Neural Comput.
4
(
5
),
720
736
(
1992
).
21.
D. S.
Hochbaum
and
D. B.
Shmoys
, “
A best possible heuristic for the k-center problem
,”
Math. Oper. Res.
10
(
2
),
180
184
(
1985
).
22.
B.
Wang
,
H.
Suzuki
, and
K.
Aihara
, “
Enhancing synchronization stability in a multi-area power grid
,”
Sci. Rep.
6
,
26596
(
2016
).
23.
A. E.
Motter
,
S. A.
Myers
,
M.
Anghel
, and
T.
Nishikawa
, “
Spontaneous synchrony in power-grid networks
,”
Nat. Phys.
9
(
3
),
191
197
(
2013
).
24.
P.
Ji
and
J.
Kurths
, “Basin stability in complex oscillator networks,” in International Conference on Nonlinear Dynamics of Electronic Systems (Springer, 2014), pp. 211–218.
You do not currently have access to this content.