Modern view of network resilience and epidemic spreading has been shaped by percolation tools from statistical physics, where nodes and edges are removed or immunized randomly from a large-scale network. In this paper, we produce a theoretical framework for studying targeted immunization in networks, where only n nodes can be observed at a time with the most connected one among them being immunized and the immunity it has acquired may be lost subject to a decay probability ρ. We examine analytically the percolation properties as well as scaling laws, which uncover distinctive characters for Erdős–Rényi and power-law networks in the two dimensions of n and ρ. We study both the case of a fixed immunity loss rate as well as an asymptotic total loss scenario, paving the way to further understand temporary immunity in complex percolation processes with limited knowledge.

1.
M. E. J.
Newman
,
Networks
, 2nd ed. (
Oxford University Press
,
Oxford
,
2018
).
2.
S. N.
Dorogovtsev
,
A. V.
Goltsev
, and
J. F. F.
Mendes
, “
Critical phenomena in complex networks
,”
Rev. Mod. Phys.
80
,
1275
(
2008
).
3.
J.
Gao
,
S. V.
Buldyrev
,
H. E.
Stanley
, and
S.
Havlin
, “
Networks formed from interdependent networks
,”
Nat. Phys.
8
,
40
48
(
2012
).
4.
A.
Allard
and
L.
Hébert-Dufresne
, “
Percolation and the effective structure of complex networks
,”
Phys. Rev. X
9
,
011023
(
2019
).
5.
R.
Pastor-Satorras
and
A.
Vespignani
, “
Immunization of complex networks
,”
Phys. Rev. E
65
,
036104
(
2002
).
6.
R.
Cohen
,
S.
Havlin
, and
D.
ben Avraham
, “
Efficient immunization strategies for computer networks and populations
,”
Phys. Rev. Lett.
91
,
247901
(
2003
).
7.
J. A.
Smith
,
J.
Moody
, and
J. H.
Morgan
, “
Network sampling coverage II: The effect of non-random missing data on network measurement
,”
Soc. Netw.
48
,
78
99
(
2017
).
8.
Y.
Shang
, “
Subgraph robustness of complex networks under attacks
,”
IEEE Trans. Syst. Man Cybern. Syst.
49
,
821
832
(
2019
).
9.
C.
Martin
and
P.
Niemeyer
, “
Influence of measurement errors on networks: Estimating the robustness of centrality measures
,”
Netw. Sci.
7
,
180
195
(
2019
).
10.
Y.
Liu
,
H.
Sanhedrai
,
G.
Dong
,
L. M.
Shekhtman
,
F.
Wang
,
S. V.
Buldyrev
, and
S.
Havlin
, “
Efficient network immunization under limited knowledge
,”
Nat. Sci. Rev.
8
,
nwaa229
(
2020
).
11.
S. F.
Rosenblatt
,
J. A.
Smith
,
G. R.
Gauthier
, and
L.
Hébert-Dufresne
, “
Immunization strategies in networks with missing data
,”
PLoS Comput. Biol.
16
,
e1007897
(
2020
).
12.
S.
Chen
and
X.
Lu
, “
An immunization strategy for hidden populations
,”
Sci. Rep.
7
,
3268
(
2017
).
13.
M.
Otsuka
and
S.
Tsugawa
, “
Robustness of network attack strategies against node sampling and link errors
,”
PLoS One
14
,
e0221885
(
2019
).
14.
Ş.
Erkol
,
A.
Faqeeh
, and
F.
Radicchi
, “
Influence maximization in noisy networks
,”
EPL
123
,
58007
(
2018
).
15.
Y.
Shang
, “
Percolation of attack with tunable limited knowledge
,”
Phys. Rev. E
103
,
042316
(
2021
).
16.
R. E.
Baker
,
W.
Yang
,
G. A.
Vecchi
,
C. J. E.
Metcalf
, and
B. T.
Grenfell
, “
Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic
,”
Science
369
,
315
319
(
2020
).
17.
F. E.
Cornes
,
G. A.
Frank
, and
C. O.
Dorso
, “
Fear propagation and the evacuation dynamics
,”
Simul. Model. Pract. Theory
95
,
112
133
(
2019
).
18.
H. W.
Hethcote
,
H. W.
Stech
, and
P.
van den Driessche
, “Periodicity and stability in epidemic models: A survey,” in Differential Equations and Applications in Ecology, Epidemics and Population Problems, edited by S. Busenberg and K. L. Cooke (Academic Press, New York, 1981), pp. 65–82.
19.
O. N.
Bjørnstad
,
K.
Shea
,
M.
Krzywinski
, and
N.
Altman
, “
The SEIRS model for infectious disease dynamics
,”
Nat. Methods
17
,
557
558
(
2020
).
20.
A.
Majdandzic
,
B.
Podobnik
,
S. V.
Buldyrev
,
D. Y.
Kenett
,
S.
Havlin
, and
H. E.
Stanley
, “
Spontaneous recovery in dynamical networks
,”
Nat. Phys.
10
,
34
38
(
2014
).
21.
Y.
Shang
, “
Impact of self-healing capability on network robustness
,”
Phys. Rev. E
91
,
042804
(
2015
).
22.
A. M.
Smith
,
M.
Pósfai
,
M.
Rohden
,
A. D.
González
,
L. D.
nas Osorio
, and
R. M.
D’Souza
, “
Competitive percolation strategies for network recovery
,”
Sci. Rep.
9
,
11843
(
2019
).
23.
H.
Pishro-Nik
,
Introduction to Probability, Statistics, and Random Processes
(
Kappa Research
,
Sunderland, MA
,
2014
).
24.
M. E. J.
Newman
,
S. H.
Strogatz
, and
D. J.
Watts
, “
Random graphs with arbitrary degree distributions and their applications
,”
Phys. Rev. E
64
,
026118
(
2001
).
25.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Error and attack tolerance of complex networks
,”
Nature
406
,
378
(
2000
).
26.
D. H.
Nguyen
,
G.
Yin
, and
C.
Zhu
, “
Long-term analysis of a stochastic SIRS model with general incidence rates
,”
SIAM J. Appl. Math.
80
,
814
838
(
2020
).
27.
Y.
Shang
, “
Modeling epidemic spread with awareness and heterogeneous transmission rates in networks
,”
J. Biol. Phys.
39
,
489
500
(
2013
).
You do not currently have access to this content.