We analyze the existence of chaotic and regular dynamics, transient chaos phenomenon, and multistability in the parameter space of two electrically interacting FitzHugh–Nagumo (FHN) neurons. By using extensive numerical experiments to investigate the particular organization between periodic and chaotic domains in the parameter space, we obtained three important findings: (i) there are self-organized generic stable periodic structures along specific directions immersed in a chaotic portion of the parameter space; (ii) the existence of transient chaos phenomenon is responsible for long chaotic temporal evolution preceding the asymptotic (periodic) dynamics for particular parametric combinations in the parameter space; and (iii) the existence of various multistable domains in the parameter space with an arbitrary number of attractors. Additionally, we also prove through numerical simulations that chaos, transient chaos, and multistability prevail even for different coupling strengths between identical FHN neurons. It is possible to find multistable attractors in the phase and parameter spaces and to steer them apart by increasing the asymmetry in the coupling force between neurons. Such a strategy can be essential to experimental matters, as setting the right parameter ranges. As the FHN model shares the crucial properties presented by the more realistic Hodgkin–Huxley-like neurons, our results can be extended to high-dimensional coupled neuron models.

1.
L.
Wang
,
W.
Liu
,
H.
Shi
, and
J. M.
Zurada
, “
Cellular neural networks with transient chaos
,”
IEEE Trans. Circuits Syst. II
54
,
440
(
2007
).
2.
Y.
Shim
and
P.
Husbands
, “
The chaotic dynamics and multistability of two coupled FitzHugh–Nagumo model neurons
,”
Adapt. Behav.
26
,
165
(
2018
).
3.
P.
Orio
,
M.
Gatica
,
R.
Herzog
,
J. P.
Maidana
,
S.
Castro
, and
K.
Xu
, “
Chaos versus noise as drivers of multistability in neural networks
,”
Chaos
28
,
106321
(
2018
).
4.
H.
Lin
,
C.
Wang
, and
Y.
Tan
, “
Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation
,”
Nonlinear Dyn.
99
,
2369
(
2020
).
5.
B. R. R.
Boaretto
,
R. C.
Budzinski
,
T. L.
Prado
,
J.
Kurths
, and
S. R.
Lopes
, “
Neuron dynamics variability and anomalous phase synchronization of neural networks
,”
Chaos
28
,
106304
(
2018
).
6.
E. N.
Davison
,
Z.
Aminzare
,
B.
Dey
, and
N. E.
Leonard
, “
Mixed mode oscillations and phase locking in coupled FitzHugh–Nagumo model neurons
,”
Chaos
29
,
033105
(
2019
).
7.
R. C.
Budzinski
,
B. R. R.
Boaretto
,
T. L.
Prado
, and
S. R.
Lopes
, “
Phase synchronization and intermittent behavior in healthy and alzheimer-affected human-brain-based neural network
,”
Phys. Rev. E
99
,
022402
(
2019
).
8.
R.
FitzHugh
, “
Impulses and physiological states in theoretical models of nerve membrane
,”
Biophysical J.
1
,
445
(
1961
).
9.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
, “An active pulse transmission line simulating nerve axon,”
Proc. IRE
50
,
2061
(
1962
).
10.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol. (Lond.)
117
,
500
(
1952
).
11.
B.
van der Pol
, “A theory of the amplitude of free and forced triode vibrations,” Radio Rev. (later Wireless World) 1, 701 (1920).
12.
S.
Barland
,
O.
Piro
,
M.
Giudici
,
J. R.
Tredicce
, and
S.
Balle
, “
Experimental evidence of van der Pol–FitzHugh–Nagumo dynamics in semiconductor optical amplifiers
,”
Phys. Rev. E
68
,
036209
(
2003
).
13.
S. A.
Campbell
and
M.
Waite
, “
Multistability in coupled FitzHugh–Nagumo oscillators
,”
Nonlinear Anal.
47
,
1093
(
2001
).
14.
S. A.
Pankratova
,
A. V.
Polovinkin
, and
S.
Spagnolo
, “
Suppression of noise in FitzHugh–Nagumo model driven by a strong periodic signal
,”
Phys. Lett. A
344
,
43
(
2005
).
15.
S.
Zambrano
,
I. P.
Mario
,
J. M.
Seoane
,
M. A. F.
Sanjuán
,
S.
Euzzor
,
A.
Geltrude
,
R.
Meucci
, and
F. T.
Arecchi
,
New J. Phys.
12
,
053040
(
2010
).
16.
N. A.
Kudryashov
, “
Asymptotic and exact solutions of the FitzHugh–Nagumo model
,”
Regul. Chaot. Dyn.
23
,
152
(
2018
).
17.
J. E.
Parker
and
K. M.
Short
, “
Sigmoidal synaptic learning produces mutual stabilization in chaotic FitzHugh–Nagumo model
,”
Chaos
30
,
063108
(
2020
).
18.
Q.
Xu
and
D.
Zhu
, “
FPGA-based experimental validations of electrical activities in two adjacent FitzHugh–Nagumo neurons coupled by memristive electromagnetic induction
,”
IETE Tech. Rev.
0
,
1
(
2020
).
19.
E.
Adomaitienė
,
S.
Ašmontas
,
S.
Bumelienė
, and
A.
Tamaševičius
, “
Quenching coupled FitzHugh–Nagumo oscillators by repulsive feedback
,”
Phys. Scr.
95
,
105202
(
2020
).
20.
G.
Ruzzene
,
I.
Omelchenko
,
J.
Sawicki
,
A.
Zakharova
,
E.
Schöll
, and
R. G.
Andrzejak
, “
Remote pacemaker control of chimera states in multilayer networks of neurons
,”
Phys. Rev. E
102
,
052216
(
2020
).
21.
E.
Adomaitienė
,
S.
Ašmontas
,
S.
Bumelienė
, and
A.
Tamaševičius
, “
Local control of an array of the diffusively coupled FitzHugh–Nagumo oscillators via repulsive mean field
,”
J. Appl. Phys.
128
,
074902
(
2020
).
22.
A.
Saha
and
U.
Feudel
, “
Characteristics of in-out intermittency in delay-coupled FitzHugh–Nagumo oscillators
,”
Eur. Phys. J. Spec. Top.
227
,
1205
(
2018
).
23.
A.
Saha
and
U.
Feudel
, “
Extreme events in FitzHugh–Nagumo oscillators coupled with two time delays
,”
Phys. Rev. E
95
,
062219
(
2017
).
24.
G.
Zhao
,
Z.
Hou
, and
H.
Xin
, “
Frequency-selective response of periodically forced coupled fhn models via system size multi-resonance
,”
Phys. Chem. Chem. Phys.
7
,
3634
(
2005
).
25.
A.
Hoff
,
J. V.
dos Santos
,
C.
Manchein
, and
H. A.
Albuquerque
, “
Numerical bifurcation analysis of two coupled FitzHugh–Nagumo oscillators
,”
Eur. Phys. J. B
87
,
151
(
2014
).
26.
B. R. R.
Boaretto
,
C.
Manchein
,
T. L.
Prado
, and
S. R.
Lopes
, “
The role of individual neuron ion conductances in the synchronization processes of neuron networks
,”
Neural Networks
137
,
97
(
2021
).
27.
R. M.
da Silva
,
N. S.
Nicolau
,
C.
Manchein
, and
M. W.
Beims
, “
Steering multiattractors to overcome parameters inaccuracy and noise effects
,”
Phys. Rev. E
98
,
032210
(
2018
).
28.
R. M.
da Silva
,
C.
Manchein
, and
M. W.
Beims
, “
Controling intermediate dynamics in a family of quadratic map
,”
Chaos
27
,
103101
(
2017
).
29.
C.
Manchein
,
R. M.
da Silva
, and
M. W.
Beims
, “
Proliferation os stability in phase and parameter spaces of nonlinear systems
,”
Chaos
27
,
081101
(
2017
).
30.
R. M.
da Silva
,
C.
Manchein
, and
M. W.
Beims
, “
Optimizing thermally affected ratchet currents using periodic perturbations
,”
Physica A
508
,
454
(
2018
).
31.
E. S.
Medeiros
,
S. L. T.
Souza
,
R. O.
Medrano-T
, and
I. L.
Caldas
, “
Periodic window arising in the parameter space of an impact oscillator
,”
Phys. Lett. A
374
,
2628
(
2010
).
32.
E. S.
Medeiros
,
S. L. T.
Souza
,
R. O.
Medrano-T
, and
I. L.
Caldas
, “
Replicate periodic windows in the parameter space of driven oscillators
,”
Chaos, Solitons Fractals
44
,
982
(
2011
).
33.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J. M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them
,”
Meccanica
15
,
09
(
1980
).
34.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
(
1985
).
35.
J. A. C.
Gallas
, “
Structure of the parameter space of the Hénon map
,”
Phys. Rev. Lett.
70
,
2714
(
1993
).
36.
E.
Lorenz
, “
Compound windows of the Hénon-map
,”
Physica D
237
,
1689
(
2008
).
37.
A.
Celestino
,
C.
Manchein
,
H. A.
Albuquerque
, and
M. W.
Beims
, “
Ratchet transport and periodic structures in parameter space
,”
Phys. Rev. Lett.
106
,
234101
(
2011
).
38.
W. F.
Magalhães
,
H. A.
Albuquerque
, and
C.
Manchein
, “
Transient chaos, hyperchaotic dynamics, and transport properties in a bailout embedding web map
,”
Int. J. Bif. Chaos
30
,
2030049
(
2020
).
39.
Y.
Lai
and
T.
Tél
, Transient Chaos: Complex Dynamics on Finite Time Scales, 2011th ed., Applied Mathematical Sciences (Springer-Verlag, New York, 2011).
40.
H.
Hegger
,
H.
Kantz
, and
T.
Schreiber
, “
Practical implementation of nonlinear time series methods: The TISEAN package
,”
Chaos
9
,
413
(
1999
).
41.
H.
Hegger
,
H.
Kantz
, and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
42.
C.
Manchein
,
J.
Rosa
, and
M. W.
Beims
, “
Chaotic motion at the emergence of the time averaged energy decay
,”
Physica D
238
,
1688
(
2009
).
43.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambrige University Press
,
New York
,
2002
).
44.
A.
Daza
,
A.
Wagemakers
,
M. A. F.
Sanjuán
, and
J. A.
Yorke
, “
Testing for basins of wada
,”
Sci. Rep.
5
,
16579
(
2015
).
45.
F. T.
Arecchi
,
R.
Badii
, and
A.
Politi
, “
Generalized multistability and noise-induced jumps in a nonlinear dynamical system
,”
Phys. Rev. A
32
,
402
(
1985
).
46.
J. A.
Kelso
, “
Multistability and metastability: Understanding dynamic coordination in the brain
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
367
(
1591
),
906
(
2012
).
47.
V.
Wiggers
and
P. C.
Rech
, “
Multistability and organization of periodicity in a van der Pol–Duffing oscillator
,”
Chaos, Solitons Fractals
103
,
632
(
2017
).
48.
D. K.
Bandy
,
E. K. T.
Burton
,
J. R.
Hall
,
D. M.
Chapman
, and
J. T.
Elrod
, “
Predicting attractor characteristics using Lyapunov exponents in a laser with injected signal
,”
Chaos
31
,
013120
(
2021
).
49.
T.
Tél
, “
The joy of transient chaos
,”
Chaos
25
,
097619
(
2015
).
You do not currently have access to this content.