Complex-valued quadratic maps either converge to fixed points, enter into periodic cycles, show aperiodic behavior, or diverge to infinity. Which of these scenarios takes place depends on the map’s complex-valued parameter c and the initial conditions. The Mandelbrot set is defined by the set of c values for which the map remains bounded when initiated at the origin of the complex plane. In this study, we analyze the dynamics of a coupled network of two pairs of two quadratic maps in dependence on the parameter c. Across the four maps, c is kept the same whereby the maps are identical. In analogy to the behavior of individual maps, the network iterates either diverge to infinity or remain bounded. The bounded solutions settle into different stable states, including full synchronization and desynchronization of all maps. Furthermore, symmetric partially synchronized states of within-pair synchronization and across-pair synchronization as well as a symmetry broken chimera state are found. The boundaries between bounded and divergent solutions in the domain of c are fractals showing a rich variety of intriguingly esthetic patterns. Moreover, the set of bounded solutions is divided into countless subsets throughout all length scales in the complex plane. Each individual subset contains only one state of synchronization and is enclosed within fractal boundaries by c values leading to divergence.

1.
V. V.
Astakhov
,
V. S.
Anishchenko
, and
A. V.
Shabunin
, “
Controlling spatiotemporal chaos in a chain of the coupled logistic maps
,”
IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl.
42
,
352
357
(
1995
).
2.
V. S.
Anishchenko
,
T. E.
Vadivasova
,
G. I.
Strelova
, and
A. S.
Kopeikin
, “
Chaotic attractors of two-dimensional invertible maps
,”
Discrete Dyn. Nat. Soc.
2
,
249
256
(
1998
).
3.
V.
Astakhov
,
A.
Shabunin
,
A.
Klimshin
, and
V.
Anishchenko
, “
In-phase and antiphase complete chaotic synchronization in symmetrically coupled discrete maps
,”
Discrete Dyn. Nat. Soc.
7
,
215
229
(
2002
).
4.
T. E.
Vadivasova
,
G. I.
Strelkova
,
S. A.
Bogomolov
, and
V. S.
Anishchenko
, “
Correlation analysis of the coherence–incoherence transition in a ring of nonlocally coupled logistic maps
,”
Chaos
26
,
093108
(
2016
).
5.
S.
Bogomolov
,
G.
Strelkova
,
E.
Schöll
, and
V.
Anishchenko
, “
Amplitude and phase chimeras in an ensemble of chaotic oscillators
,”
Tech. Phys. Lett.
42
,
765
768
(
2016
).
6.
S. A.
Bogomolov
,
A. V.
Slepnev
,
G. I.
Strelkova
,
E.
Schöll
, and
V. S.
Anishchenko
, “
Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems
,”
Commun. Nonlinear Sci. Numer. Simul.
43
,
25
36
(
2017
).
7.
G. I.
Strelkova
,
T. E.
Vadivasova
, and
V. S.
Anishchenko
, “
Synchronization of chimera states in a network of many unidirectionally coupled layers of discrete maps
,”
Regul. Chaotic Dyn.
23
,
948
960
(
2018
).
8.
E.
Rybalova
,
T.
Vadivasova
,
G.
Strelkova
,
V.
Anishchenko
, and
A.
Zakharova
, “
Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode
,”
Chaos
29
,
033134
(
2019
).
9.
M.
Winkler
,
J.
Sawicki
,
I.
Omelchenko
,
A.
Zakharova
,
V.
Anishchenko
, and
E.
Schöll
, “
Relay synchronization in multiplex networks of discrete maps
,”
Europhys. Lett.
126
,
50004
(
2019
).
10.
N.
Semenova
,
A.
Zakharova
,
E.
Schöll
, and
V.
Anishchenko
, “
Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?
,”
Europhys. Lett.
112
,
40002
(
2015
).
11.
N. I.
Semenova
,
E. V.
Rybalova
,
G. I.
Strelkova
, and
V. S.
Anishchenko
, “
“Coherence–incoherence” transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors
,”
Regul. Chaotic Dyn.
22
,
148
162
(
2017
).
12.
N.
Semenova
,
G.
Strelkova
,
V.
Anishchenko
, and
A.
Zakharova
, “
Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators
,”
Chaos
27
,
061102
(
2017
).
13.
A.
Bukh
,
E.
Rybalova
,
N.
Semenova
,
G.
Strelkova
, and
V.
Anishchenko
, “
New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps
,”
Chaos
27
,
111102
(
2017
).
14.
E.
Rybalova
,
G.
Strelkova
,
E.
Schöll
, and
V.
Anishchenko
, “
Relay and complete synchronization in heterogeneous multiplex networks of chaotic maps
,”
Chaos
30
,
061104
(
2020
).
15.
E.
Rybalova
,
G.
Strelkova
, and
V.
Anishchenko
, “
Impact of sparse inter-layer coupling on the dynamics of a heterogeneous multilayer network of chaotic maps
,”
Chaos, Solitons Fract.
142
,
110477
(
2021
).
16.
I. A.
Shepelev
,
A. V.
Bukh
,
G. I.
Strelkova
,
T. E.
Vadivasova
, and
V. S.
Anishchenko
, “
Chimera states in ensembles of bistable elements with regular and chaotic dynamics
,”
Nonlinear Dyn.
90
,
2317
2330
(
2017
).
17.
I. A.
Shepelev
,
A.
Bukh
,
T. E.
Vadivasova
,
V. S.
Anishchenko
, and
A.
Zakharova
, “
Double-well chimeras in 2d lattice of chaotic bistable elements
,”
Commun. Nonlinear Sci. Numer. Simul.
54
,
50
61
(
2018
).
18.
A.
Bukh
,
E.
Schöll
, and
V.
Anishchenko
, “
Synchronization of spiral wave patterns in two-layer 2D lattices of nonlocally coupled discrete oscillators
,”
Chaos
29
,
053105
(
2019
).
19.
Y.
Kuramoto
and
D.
Battogtokh
, “
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators
,”
Nonlinear Phenom. Complex Syst.
5
,
380
385
(
2002
).
20.
D. M.
Abrams
and
S. H.
Strogatz
, “
Chimera states for coupled oscillators
,”
Phys. Rev. Lett.
93
,
174102
(
2004
).
21.
V.
Santos
,
J. D.
Szezech
,
A. M.
Batista
,
K. C.
Iarosz
,
M. S.
Baptista
,
H. P.
Ren
,
C.
Grebogi
,
R. L.
Viana
,
I. L.
Caldas
,
Y. L.
Maistrenko
, and
J.
Kurths
, “
Riddling: Chimera’s dilemma
,”
Chaos
28
,
081105
(
2018
).
22.
V.
dos Santos
,
F. S.
Borges
,
K. C.
Iarosz
,
I. L.
Caldas
,
J.
Szezech
,
R. L.
Viana
,
M. S.
Baptista
, and
A. M.
Batista
, “
Basin of attraction for chimera states in a network of Rössler oscillators
,”
Chaos
30
,
083115
(
2020
).
23.
Y.
Zhang
,
Z. G.
Nicolaou
,
J. D.
Hart
,
R.
Roy
, and
A. E.
Motter
, “
Critical switching in globally attractive chimeras
,”
Phys. Rev. X
10
,
011044
(
2020
).
24.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hövel
, and
E.
Schöll
, “
Loss of coherence in dynamical networks: Spatial chaos and chimera states
,”
Phys. Rev. Lett.
106
,
234102
(
2011
).
25.
I.
Omelchenko
,
B.
Riemenschneider
,
P.
Hövel
,
Y.
Maistrenko
, and
E.
Schöll
, “
Transition from spatial coherence to incoherence in coupled chaotic systems
,”
Phys. Rev. E
85
,
026212
(
2012
).
26.
Y.
Zhang
and
A. E.
Motter
, “Mechanism for strong chimeras,”
Phys. Rev. Lett.
126
(9),
094101
(
2021
).
27.
I.
Korneev
,
V.
Semenov
,
A.
Slepnev
, and
T.
Vadivasova
, “
Complete synchronization of chaos in systems with nonlinear inertial coupling
,”
Chaos, Solitons Fract.
142
,
110459
(
2021
).
28.
A.
zur Bonsen
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera states in networks of logistic maps with hierarchical connectivities
,”
Eur. Phys. J. B
91
,
65
(
2018
).
29.
S.
Ghosh
,
A.
Zakharova
, and
S.
Jalan
, “
Non-identical multiplexing promotes chimera states
,”
Chaos, Solitons Fract.
106
,
56
60
(
2018
).
30.
P.
Chandran
,
R.
Gopal
,
V.
Chandrasekar
, and
N.
Athavan
, “
Chimera states in coupled logistic maps with additional weak nonlocal topology
,”
Chaos
29
,
053125
(
2019
).
31.
T.
Vadivasova
,
A.
Slepnev
, and
A.
Zakharova
, “
Control of inter-layer synchronization by multiplexing noise
,”
Chaos
30
,
091101
(
2020
).
32.
L.
Khaleghi
,
S.
Panahi
,
S. N.
Chowdhury
,
S.
Bogomolov
,
D.
Ghosh
, and
S.
Jafari
, “
Chimera states in a ring of map-based neurons
,”
Physica A
536
,
122596
(
2019
).
33.
C. R.
Nayak
and
N.
Gupte
, “
Chimera states in coupled sine-circle map lattices
,”
AIP Conf. Proc.
1339
,
172
180
(
2011
).
34.
J.
Singha
and
N.
Gupte
, “
Spatial splay states and splay chimera states in coupled map lattices
,”
Phys. Rev. E
94
,
052204
(
2016
).
35.
J.
Singha
and
N.
Gupte
, “
Chimera states in coupled map lattices: Spatiotemporally intermittent behavior and an equivalent cellular automaton
,”
Chaos
30
,
113102
(
2020
).
36.
J. D.
Hart
,
D. C.
Schmadel
,
T. E.
Murphy
, and
R.
Roy
, “
Experiments with arbitrary networks in time-multiplexed delay systems
,”
Chaos
27
,
121103
(
2017
).
37.
A. M.
Hagerstrom
,
T. E.
Murphy
,
R.
Roy
,
P.
Hövel
,
I.
Omelchenko
, and
E.
Schöll
, “
Experimental observation of chimeras in coupled-map lattices
,”
Nat. Phys.
8
,
658
661
(
2012
).
38.
D.
Dudkowski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
Different types of chimera states: An interplay between spatial and dynamical chaos
,”
Phys. Rev. E
90
,
032920
(
2014
).
39.
R. G.
Andrzejak
,
G.
Ruzzene
,
E.
Schöll
, and
I.
Omelchenko
, “
Two populations of coupled quadratic maps exhibit a plentitude of symmetric and symmetry broken dynamics
,”
Chaos
30
,
033125
(
2020
).
40.
P.
Fatou
, “
Sur les substitutions rationnelles
,”
C. R. Acad. Sci. Paris
164
,
806
808
(
1917
).
41.
G.
Julia
, “Mémoire sur la permutabilité des fractions rationnelles,” in
Annales Scientifiques de l’École Normale Supérieure
(Numdam, 1922), Vol. 39, pp. 131–215.
42.
R.
Brooks
and
J. P.
Matelski
, “The dynamics of 2-generator subgroups of PSL (2, C),” in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Annals of Mathematics Studies Vol. 97 (1981), pp. 65–71.
43.
B. B.
Mandelbrot
, “
Fractal aspects of the iteration of zλz(1z) for complex λ and z
,”
Ann. N. Y. Acad. Sci.
357
,
249
259
(
1980
).
44.
A.
Douady
,
J. H.
Hubbard
, and
P.
Lavaurs
, “
Etude dynamique des polynômes complexes
,”
Publ. Math. Orsay
2
,
4
(
1984
).
45.
P.
Ashwin
and
O.
Burylko
, “
Weak chimeras in minimal networks of coupled phase oscillators
,”
Chaos
25
,
013106
(
2015
).
46.
F.
Böhm
,
A.
Zakharova
,
E.
Schöll
, and
K.
Lüdge
, “
Amplitude-phase coupling drives chimera states in globally coupled laser networks
,”
Phys. Rev. E
91
,
040901
(
2015
).
47.
M. J.
Panaggio
,
D. M.
Abrams
,
P.
Ashwin
, and
C. R.
Laing
, “
Chimera states in networks of phase oscillators: The case of two small populations
,”
Phys. Rev. E
93
,
012218
(
2016
).
48.
J. D.
Hart
,
K.
Bansal
,
T. E.
Murphy
, and
R.
Roy
, “
Experimental observation of chimera and cluster states in a minimal globally coupled network
,”
Chaos
26
,
094801
(
2016
).
49.
J.
Wojewoda
,
K.
Czolczynski
,
Y.
Maistrenko
, and
T.
Kapitaniak
, “
The smallest chimera state for coupled pendula
,”
Sci. Rep.
6
,
34329
(
2016
).
50.
Y.
Maistrenko
,
S.
Brezetsky
,
P.
Jaros
,
R.
Levchenko
, and
T.
Kapitaniak
, “
Smallest chimera states
,”
Phys. Rev. E
95
,
010203
(
2017
).
51.
P.
Ebrahimzadeh
,
M.
Schiek
,
P.
Jaros
,
T.
Kapitaniak
,
S.
van Waasen
, and
Y.
Maistrenko
, “
Minimal chimera states in phase-lag coupled mechanical oscillators
,”
Eur. Phys. J. Spec. Top.
229
,
2205
2214
(
2020
).
52.
J.
Sharma
,
I.
Tiwari
,
D.
Das
, and
P.
Parmananda
, “
Chimeralike states in a minimal network of active camphor ribbons
,”
Phys. Rev. E
103
,
012214
(
2021
).
53.
We performed the analysis using MATLAB with double floating point precision. The values of the quadratic map are of the order 100. The value εNUM is, therefore, just above the resolution of the double floating point precision.70 Pre-analysis showed this threshold to be optimal in minimizing the impact of numerical roundoff errors.
54.
H.-O.
Peitgen
,
H.
Jürgens
, and
D.
Saupe
,
Chaos and Fractals: New Frontiers of Science
(
Springer Science & Business Media
,
2006
).
55.
For a more detailed discussion of these spirals in the Mandelbrot set, their relation to the corresponding Julia sets, and Misiurewicz points, see Ref. 54, and references therein.
56.
E. A.
Martens
,
M. J.
Panaggio
, and
D. M.
Abrams
, “
Basins of attraction for chimera states
,”
New J. Phys.
18
,
022002
(
2016
).
57.
J.
Hizanidis
,
E.
Panagakou
,
I.
Omelchenko
,
E.
Schöll
,
P.
Hövel
, and
A.
Provata
, “
Chimera states in population dynamics: Networks with fragmented and hierarchical connectivities
,”
Phys. Rev. E
92
,
012915
(
2015
).
58.
S.
Ulonska
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera states in networks of Van der Pol oscillators with hierarchical connectivities
,”
Chaos
26
,
094825
(
2016
).
59.
J.
Sawicki
,
I.
Omelchenko
,
A.
Zakharova
, and
E.
Schöll
, “
Chimera states in complex networks: Interplay of fractal topology and delay
,”
Eur. Phys. J. Spec. Top.
226
,
1883
1892
(
2017
).
60.
T.
Chouzouris
,
I.
Omelchenko
,
A.
Zakharova
,
J.
Hlinka
,
P.
Jiruska
, and
E.
Schöll
, “
Chimera states in brain networks: Empirical neural vs. modular fractal connectivity
,”
Chaos
28
,
045112
(
2018
).
61.
G.
Argyropoulos
and
A.
Provata
, “
Chimera states with 2D deterministic and random fractal connectivity
,”
Front. Appl. Math. Stat.
5
,
35
(
2019
).
62.
P.
Liu
, “
Control and synchronization of Mandelbrot sets in coupled map lattice
,”
Nonlinear Dyn.
73
,
299
310
(
2013
).
63.
D.
Wang
,
S.
Liu
,
Y.
Zhao
, and
C.
Jiang
, “
Control of the spatial Mandelbrot set generated in coupled map lattice
,”
Nonlinear Dyn.
84
,
1795
1803
(
2016
).
64.
R. G.
Andrzejak
,
C.
Rummel
,
F.
Mormann
, and
K.
Schindler
, “
All together now: Analogies between chimera state collapses and epileptic seizures
,”
Sci. Rep.
6
,
23000
(
2016
).
65.
R. G.
Andrzejak
,
G.
Ruzzene
, and
I.
Malvestio
, “
Generalized synchronization between chimera states
,”
Chaos
27
,
053114
(
2017
).
66.
R. G.
Andrzejak
,
G.
Ruzzene
,
I.
Malvestio
,
K.
Schindler
,
E.
Schöll
, and
A.
Zakharova
, “
Mean field phase synchronization between chimera states
,”
Chaos
28
,
091101
(
2018
).
67.
G.
Ruzzene
,
I.
Omelchenko
,
E.
Schöll
,
A.
Zakharova
, and
R. G.
Andrzejak
, “
Controlling chimera states via minimal coupling modification
,”
Chaos
29
,
051103
(
2019
).
68.
G.
Ruzzene
,
I.
Omelchenko
,
J.
Sawicki
,
A.
Zakharova
,
E.
Schöll
, and
R. G.
Andrzejak
, “
Remote pacemaker control of chimera states in multilayer networks of neurons
,”
Phys. Rev. E
102
,
052216
(
2020
).
69.
Open access library repository,
Universitat Pompeu Fabra
, https://doi.org/10.34810/data49.
70.
IEEE Standards Committee
, “
754-2008 IEEE standard for floating-point arithmetic
,”
IEEE Comput. Soc. Std.
1
70
(
2008
).

Supplementary Material

You do not currently have access to this content.