We propose a Lévy noise-driven susceptible-exposed-infected-recovered model incorporating media coverage to analyze the outbreak of COVID-19. We conduct a theoretical analysis of the stochastic model by the suitable Lyapunov function, including the existence and uniqueness of the positive solution, the dynamic properties around the disease-free equilibrium and the endemic equilibrium; we deduce a stochastic basic reproduction number R0s for the extinction of disease, that is, if R0s1, the disease will go to extinction. Particularly, we fit the data from Brazil to predict the trend of the epidemic. Our main findings include the following: (i) stochastic perturbation may affect the dynamic behavior of the disease, and larger noise will be more beneficial to control its spread; (ii) strengthening social isolation, increasing the cure rate and media coverage can effectively control the spread of disease. Our results support the feasible ways of containing the outbreak of the epidemic.

1.
Y.
Liu
,
A. A.
Gayle
,
W. S.
Annelies
, and
J.
Rocklöv
, “
The reproductive number of COVID-19 is higher compared to SARS coronavirus
,”
J. Travel. Med.
27
(
2
),
taaa021
(
2020
).
2.
See https://www.who.int/publications/m/item/weekly-epidemiological-update—24-november-2020 for information about Coronavirus COVID-19 Global Cases (accessed 29 November 2020).
3.
Ministry of Health of Brazil, see https://saude.gov.br/ for information about COVID-19 data (accessed 29 November 2020).
4.
R. P.
Walensky
and
C.
del Rio
, “
From mitigation to containment of the COVID-19 pandemic: Putting the SARS-CoV-2 genie back in the bottle
,”
JAMA
323
(
19
),
1889
1890
(
2020
).
5.
P. G. T.
Walker
,
C.
Whittaker
,
O.
Watson
et al., “
The impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countries
,”
Science
369
(
6502
),
413
422
(
2020
).
6.
R. M.
Anderson
and
R. M.
May
,
Infectious Diseases of Humans
(
Oxford University Press
,
London
,
1991
).
7.
Q.
Lin
,
S.
Zhao
,
S. S.
Musa
,
D.
Gao
,
Y.
Lou
,
S.
Yang
,
S. S.
Musa
,
M.
Wang
,
Y.
Cai
,
W.
Wang
,
L.
Yang
, and
D.
He
, “
A conceptual model of the outbreak of novel coronavirus (2019-nCoV) in Wuhan, China, with human reaction and holiday effects
,”
Int. J. Infect. Dis.
93
,
211
216
(
2020
).
8.
F.
Brauer
and
C.
Castillo-Chavez
, Mathematical Models in Population Biology and Epidemiology, 2nd ed., Springer Texts in Applied Mathematics (Springer, 2012), Vol. 40.
9.
C.
Li
,
J.
Xu
,
J.
Liu
, and
Y.
Zhou
, “
The within-host viral kinetics of SARS-CoV-2
,”
MBE
17
(
4
),
2853
2861
(
2020
).
10.
L.
Peng
,
W.
Yang
,
D.
Zhang
,
C.
Zhuge
, and
L.
Hong
, “Epidemic analysis of COVID-19 in China by dynamical modeling,” arXiv:2002.06563 (2020).
11.
Z.
Ahmad
,
M.
Arif
,
F.
Ali
,
I.
Khan
, and
K. S.
Nisar
, “
A report on COVID-19 epidemic in Pakistan using SEIR fractional model
,”
Sci. Rep.
10
,
22268
(
2020
).
12.
L.
López
and
X.
Rodó
, “
A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics
,”
Res. Phys.
21
,
103746
(
2021
).
13.
D.
Li
,
J.
Cui
,
M.
Liu
, and
S.
Liu
, “
The evolutionary dynamics of stochastic epidemic model with nonlinear incidence rate
,”
Bull. Math. Biol.
77
,
1705
1743
(
2015
).
14.
Q.
Yang
and
X.
Mao
, “
Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations
,”
Nonlinear Anal. Real World Appl.
14
,
1434
1456
(
2013
).
15.
T.
Britton
and
D.
Lindenstrand
, “
Epidemic modelling: Aspects where stochastic epidemic models: A survey
,”
Math. Biosci.
222
,
109
116
(
2010
).
16.
D.
Faranda
,
I. P.
Castillo
,
O.
Hulme
,
A.
Jezequel
,
J. S. W.
Lamb
,
Y.
Sato
, and
E. L.
Thompson
, “
Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation
,”
Chaos
30
(
5
),
051107
(
2020
).
17.
S. A.
Lauer
,
K. H.
Grantz
,
Q.
Bi
,
F. K.
Jones
,
Q.
Zheng
,
H. R.
Meredith
,
A. S.
Azman
,
N. G.
Reich
, and
J.
Lessler
, “
The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application
,”
Ann. Intern. Med.
172
(
9
),
577
582
(
2020
).
18.
C. F.
Manski
and
F.
Molinari
, “
Estimating the COVID-19 infection rate: Anatomy of an inference problem
,”
J. Econom.
220
(
1
),
181
192
(
2020
).
19.
D.
Applebaum
,
Lévy Process and Stochastic Calculus
(
Cambridge Press
,
New York
,
2009
).
20.
B.
Øksendal
and
A.
Sulen
,
Applied Stochastic Control of Jump Diffusions
(
Springer-Verlag
,
Berlin
,
2005
).
21.
R.
Cont
and
P.
Tankov
,
Financial Modelling with Jump Processes
(
Chapman Hall
,
2004
).
22.
L.
Zhou
,
Q.
Zhu
,
Z.
Wang
,
W.
Zhou
, and
H.
Su
, “
Adaptive exponential synchronization of multislave time-delayed recurrent neural networks with Lévy noise and regime switching
,”
IEEE Trans. Neural Netw. Learn. Syst.
28
(
12
),
2885
2898
(
2017
).
23.
Y.
Xu
,
Y.
Li
,
H.
Zhang
,
X.
Li
, and
J.
Kurths
, “
The switch in a genetic toggle system with Lévy noise
,”
Sci. Rep.
6
,
31505
(
2016
).
24.
R.
Liu
and
Y.
Kang
, “
Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise
,”
Phys. Lett. A
382
(
25
),
1656
1664
(
2018
).
25.
B.
Gross
,
Z.
Zheng
,
S.
Liu
,
X.
Chen
,
A.
Sela
,
J.
Li
,
D.
Li
, and
S.
Havlin
, “
Spatiotemporal propagation of COVID-19 pandemics
,”
Europhys. Lett.
131
,
69901
(
2020
).
26.
R. J.
Blendon
,
J. M.
Benson
,
C. M.
DesRoches
,
E.
Raleigh
, and
K.
Taylor-Clark
, “
The public’s response to severe acute respiratory syndrome in Toronto and the United States
,”
Clin. Infect. Dis.
38
(
7
),
925
931
(
2004
).
27.
Y.
Liu
and
J.
Cui
, “
The impact of media coverage on the dynamics of infectious disease
,”
Int. J. Biomath.
1
,
65
74
(
2008
).
28.
J.
Tchuenche
,
N.
Dube
,
C.
Bhunu
,
R.
Smith
, and
C.
Bauch
, “
The impact of media coverage on the transmission dynamics of human influenza
,”
BMC Public Health
11
(
S1
),
S5
(
2011
).
29.
Q.
Yan
,
S.
Tang
,
S.
Gabriele
, and
J.
Wu
, “
Media coverage and hospital notifications: Correlation analysis and optimal media impact duration to manage a pandemic
,”
J. Theor. Biol.
390
,
1
13
(
2016
).
30.
P.
Van den Driessche
and
J.
Watmough
, “
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission
,”
Math. Biosci.
180
,
29
48
(
2002
).
31.
Y.
Kang
,
X.
Chen
,
X.
Lin
, and
N.
Tan
, “
Mean first passage time and stochastic resonance in a transcriptional regulatory system with non-gaussian noise
,”
Fluctuation Noise Lett.
16
,
1750007
(
2017
).
32.
C.
Ji
,
D.
Jiang
,
Q.
Yang
, and
N.
Shi
, “
Dynamics of a multigroup SIR epidemic model with stochastic perturbation
,”
Automatica
48
(
1
),
121
131
(
2012
).
33.
X.
Zhang
and
K.
Wang
, “
Stochastic SIR model with jumps
,”
Appl. Math. Lett.
26
,
867
874
(
2013
).
34.
N.
Fournier
, “
Simulation and approximation of Lévy-driven stochastic differential equations
,”
Probab. Stat.
15
,
233
248
(
2011
).
35.
See https://www.worldometers.info/world-population/brazil-population/ for information about the life expectancy in Brazil (accessed 29 November 2020).
36.
H.
Kunita
, “
Itô’s stochastic calculus: Its surprising power for applications
,”
Stochastic Process. Appl.
120
,
622
652
(
2010
).
You do not currently have access to this content.