We derive measures of local material stretching and rotation that are computable from individual trajectories without reliance on other trajectories or on an underlying velocity field. Both measures are quasi-objective: they approximate objective (i.e., observer-independent) coherence diagnostics in frames satisfying a certain condition. This condition requires the trajectory accelerations to dominate the angular acceleration induced by the spatial mean vorticity. We illustrate on examples how quasi-objective coherence diagnostics highlight elliptic and hyperbolic Lagrangian coherent structures even from very sparse trajectory data.

1
R.
Abernathey
and
G.
Haller
, “
Transport by Lagrangian vortices in the Eastern Pacific
,”
J. Phys. Oceanogr.
48
,
667
685
(
2018
).
2
N.
Aksamit
,
T.
Sapsis
, and
G.
Haller
, “
Machine-learning mesoscale and submesoscale surface dynamics from Lagrangian ocean drifter trajectories
,”
J. Phys. Oceanogr.
50
,
1179
1196
(
2020
).
3
V. I.
Arnold
,
Ordinary Differential Equations
(
Springer-Verlag
,
Berlin
,
1992
).
4
G.
Astarita
, “
Objective and generally applicable criteria for flow classification
,”
J. Non-Newton. Fluid Mech.
6
,
69
76
(
1979
).
5
A. J.
Banko
and
J. K.
Eaton
, “A frame-invariant definition of the Q-criterion,” Center for Turbulence Research Annual Research Briefs 181–194 (2019).
6
F. J.
Beron-Vera
,
Y.
Wang
,
M. J.
Olascoaga
,
J. G.
Goni
, and
G.
Haller
, “
Objective detection of oceanic eddies and the Agulhas leakage
,”
J. Phys. Oceanogr.
43
,
1426
1438
(
2013
).
7
F. J.
Beron-Vera
,
A.
Hadjighasem
,
Q.
Xia
,
M. J.
Olascoaga
, and
G.
Haller
, “
Coherent Lagrangian swirls among submesoscale motions
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
37
),
18251
18256
(
2019
).
8
N.
Delprat
,
B.
Escudié
,
P.
Guillemain
,
R.
Kronland-Martinet
,
P.
Tchamitchian
, and
B.
Torresani
, “
Asymptotic wavelet and gabor analysis: Extraction of instantaneous frequencies
,”
IEEE Trans. Inf. Theory
38
,
644
665
(
1992
).
9
T.
Dombre
,
U.
Frisch
,
J. M.
Greene
,
M.
Hénon
,
A.
Mehr
, and
A. M.
Soward
, “
Chaotic streamlines in ABC flows
,”
J. Fluid Mech.
167
,
353
391
(
1986
).
10
R.
Drouot
, “
Definition d’un transport associe un modele de fluide de deuxieme ordre
,”
C. R. Acad. Sci. Paris Ser. A
282
,
923
926
(
1976
).
11
R.
Drouot
and
M.
Lucius
, “
Approximation du second ordre de la loi de comportement des fluides simples. Lois classiques deduites de l’introduction d’un nouveau tenseur objectif
,”
Arch. Mech. Stos.
28
(
2
),
189
198
(
1976
).
12
M.
Farazmand
and
G.
Haller
, “
Polar rotation angle identifies elliptic islands in unsteady dynamical systems
,”
Physica D
315
,
1
12
(
2016
).
13
G.
Froyland
,
N.
Santitissadeekorn
, and
A.
Monahan
, “
Transport in time-dependent dynamical systems: Finite-time coherent sets
,”
Chaos
20
,
043116
(
2010
).
14
G.
Froyland
, “
An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems
,”
Physica D
250
,
1
19
(
2013
).
15
G.
Froyland
and
K.
Padberg-Gehle
, “
A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data
,”
Chaos
25
,
087406
(
2015
).
16
Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed, SSALTO/DUACS Product, E.U. Copernicus Marine Service Information [Data set]. Available at: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
17
T.
Günther
and
H.
Theisel
, “
The state of the art in vortex extraction
,”
Comput. Graph. Forum
37
,
149
173
(
2018
).
18
A.
Hadjighasem
,
D.
Karrasch
,
H.
Teramoto
, and
G.
Haller
, “
Spectral clustering approach to Lagrangian vortex detection
,”
Phys. Rev. E
93
,
063107
(
2016
).
19
A.
Hadjighasem
,
M.
Farazmand
,
D.
Blazevski
,
G.
Froyland
, and
G.
Haller
, “
A critical comparison of Lagrangian methods for coherent structure detection
,”
Chaos
27
,
053104
(
2017
).
20
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Physica D
147
,
352
370
(
2000
).
21
G.
Haller
, “
Distinguished material surfaces and coherent structures in 3D fluid flows
,”
Physica D
149
,
248
277
(
2001
).
22
G.
Haller
, “
An objective definition of a vortex
,”
J. Fluid Mech.
525
,
1
26
(
2005
).
23
G.
Haller
, “
Dynamically consistent rotation and stretch tensors from a dynamic polar decomposition
,”
J. Mech. Phys. Solids
80
,
70
93
(
2016
).
24
G.
Haller
and
F. J.
Beron-Vera
, “
Coherent Lagrangian vortices: The black holes of turbulence
,”
J. Fluid Mech.
731
,
R4
(
2013
).
25
G.
Haller
,
A.
Hadjighasem
,
M.
Farazmand
, and
F.
Huhn
, “
Defining coherent vortices objectively from the vorticity
,”
J. Fluid Mech.
795
,
136
173
(
2016
).
26
G.
Haller
,
S.
Katsanoulis
,
M.
Holzner
,
B.
Frohnapfel
, and
D.
Gatti
, “
Objective barriers to the transport of dynamically active vector fields
,”
J. Fluid Mech.
905
,
A17
(
2020
).
27
G.
Haller
, “
Lagrangian coherent structures
,”
Annu. Rev. Fluid Mech.
47
,
137
162
(
2015
).
28
K.
Hoyer
,
M.
Holzner
,
B.
Lüthi
,
M.
Guala
,
A.
Liberzon
, and
W.
Kinzelbach
, “
3D scanning particle tracking velocimetry
,”
Exp. Fluids
39
,
923
934
(
2005
).
29
D.
Kirwan
, “
On objectivity, irreversibility and non-Newtonian fluids
,”
Fluids
1
,
3
17
(
2016
).
30
J. H.
LaCasce
, “
Statistics from Lagrangian observations
,”
Prog. Oceanogr.
77
,
1
29
(
2020
).
31
F.
Lekien
and
S. D.
Ross
, “
The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds
,”
Chaos
20
,
017505
(
2010
).
32
J. M.
Lilly
and
J.-C.
Gascard
, “
Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy
,”
Nonlinear Process. Geophys.
13
,
467
483
(
2006
).
33
J. M.
Lilly
and
P.
Perez-Brunius
, “
Extracting statistically significant eddy signals from large Lagrangian datasets using wavelet ridge analysis, with application to the Gulf of Mexico
,”
Nonlinear Process. Geophys. Discuss.
(in review) (
2020
).
34
H. J.
Lugt
, “The dilemma of defining a vortex,” in Recent Developments in Theoretical and Experimental Fluid Mechanics, edited by U. Muller, K. G. Riesner, and B. Schmidt (Springer, 1979), Vol. 13, pp. 309–321.
35
R.
Lumpkin
and
M.
Pazos
,
Lagrangian Analysis and Prediction in Coastal and Ocean Processes
(
Cambridge University Press
,
2007
).
36
A. M.
Mancho
,
S.
Wiggins
,
J.
Curbelo
, and
C.
Mendoza
, “
Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems
,”
Commun. Nonlinear Sci. Numer. Simul.
18
,
3530
3557
(
2013
).
37
R.
Mundel
,
E.
Fredj
,
H.
Gildor
, and
V.
Rom-Kedar
, “
New Lagrangian diagnostics for characterizing fluid flow mixing
,”
Phys. Fluids
26
,
126602
(
2014
).
38
W.
Ott
and
J. A.
Yorke
, “
When Lyapunov exponents fail to exist
,”
Phys. Rev. E
78
,
056203
(
2008
).
39
T.
Peacock
,
G.
Froyland
, and
G.
Haller
, “
Focus issue on the objective detection of coherent structures
,”
Chaos
25
,
087201
(
2015
).
40
A.
Provenzale
, “
Transport by coherent barotropic vortices
,”
Annu. Rev. Fluid Mech.
31
,
55
93
(
1999
).
41
D. D.
Righi
and
P. T.
Strub
, “
The use of simulated drifters to estimate vorticity
,”
J. Mar. Syst.
29
,
125
140
(
2001
).
42
G. A. S.
Rosi
and
D. E.
Rival
, “
Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry
,”
Exp. Fluids
55
,
1736
(
2014
).
43
I. I.
Rypina
,
S. E.
Scott
,
L. J.
Pratt
, and
M. G.
Brown
, “
Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures
,”
Nonlinear Process. Geophys.
18
,
977
987
(
2011
).
44
K. K.
Schlueter-Kuck
and
J. O.
Dabiri
, “
Coherent structure colouring: Identification of coherent structures from sparse data using graph theory
,”
J. Fluid Mech.
811
,
468
486
(
2017
).
45
M.
Serra
and
G.
Haller
, “
Objective Eulerian coherent structures
,”
Chaos
26
,
053110
(
2016
).
46
C.
Truesdell
and
W.
Noll
,
The Non-Linear Field Theories of Mechanics
(
Springer-Verlag
,
Berlin
,
1992
).
47
M.
Veneziani
,
A.
Griffa
,
Z. D.
Garaffo
, and
E. P.
Chassignet
, “
Lagrangian spin parameter and coherent structures from trajectories released in a high-resolution ocean model
,”
J. Mar. Res.
63
,
753
788
(
2005
).
You do not currently have access to this content.