Chaotic intermittency is a route to chaos when transitions between laminar and chaotic dynamics occur. The main attribute of intermittency is the reinjection mechanism, described by the reinjection probability density (RPD), which maps trajectories from the chaotic region into the laminar one. The RPD classically was taken as a constant. This hypothesis is behind the classically reported characteristic relations, a tool describing how the mean value of the laminar length goes to infinity as the control parameter goes to zero. Recently, a generalized non-uniform RPD has been observed in a wide class of 1D maps; hence, the intermittency theory has been generalized. Consequently, the characteristic relations were also generalized. However, the RPD and the characteristic relations observed in some experimental Poincaré maps still cannot be well explained in the actual intermittency framework. We extend the previous analytical results to deal with the mentioned class of maps. We found that in the mentioned maps, there is not a well-defined RPD in the sense that its shape drastically changes depending on a small variation of the parameter of the map. Consequently, the characteristic relation classically associated to every type of intermittency is not well defined and, in general, cannot be determined experimentally. We illustrate the results with a 1D map and we develop the analytical expressions for every RPD and its characteristic relations. Moreover, we found a characteristic relation going to a constant value, instead of increasing to infinity. We found a good agreement with the numerical simulation.

1.
P.
Manneville
and
Y.
Pomeau
,
Phys. Lett. A
75
,
1
(
1979
).
2.
Y.
Pomeau
and
P.
Manneville
,
Commun. Math. Phys.
74
,
189
(
1980
).
3.
E.
del Rio
,
M. G.
Velarde
, and
A.
Rodríguez-Lozano
,
Chaos, Solitons Fractals
4
,
2169
(
1994
).
4.
E.
del Rio
and
S.
Elaskar
,
Commun. Nonlinear Sci. Numer. Simul.
64
,
122
(
2018
).
5.
M.
Ezhilarasu Pitchaimuthu
and
T.
Kathamuthu
,
Int. J. Circuit Theory Appl.
48
,
214
(
2020
).
6.
M.
Dubois
,
M.
Rubio
, and
P.
Berge
,
Phys. Rev. Lett.
51
,
1446
(
1983
).
7.
G.
Sanchez-Arriaga
,
J.
Sanmartin
, and
S.
Elaskar
,
Phys. Plasmas
14
,
082108
(
2007
).
8.
G.
Krause
,
S.
Elaskar
, and
E.
del Rio
,
Nonlinear Dyn.
77
,
455
466
(
2014
).
9.
S.
Elaskar
and
E.
del Rio
,
New Advances on Chaotic Intermittency and its Applications
(
Springer
,
2017
).
10.
A.
Diaz-Ruelas
,
H.
Jeldtoft Jensen
,
D.
Piovani
, and
A.
Robledo
,
Eur. Phys. J. Spec. Top.
226
,
341
(
2017
).
11.
Y.
Guan
,
V.
Gupta
, and
L. K. B.
Li
,
J. Fluid Mech.
894
,
R3
(
2020
).
12.
Y. A..
Mishra
,
S.
Leo Kingston
,
C.
Hens
,
T.
Kapitaniak
,
U.
Feudel
, and
S. K.
Dana
,
Chaos
30
,
063114
(
2020
).
13.
J.
Zebrowski
and
R.
Baranowski
,
Physica A
336
,
74
(
2004
).
14.
A.
Chian
,
Complex Systems Approach to Economic Dynamics
(
Springer
,
Berlin
,
2007
), p.
39
.
15.
H.
Schuster
and
W.
Just
,
Deterministic Chaos. An Introduction
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2005
).
16.
P.
Manneville
,
J. Phys.
41
,
1235
(
1980
).
17.
C. M.
Kim
,
O. J.
Kwon
,
E. K.
Lee
, and
H.
Lee
,
Phys. Rev. Lett.
73
,
525
(
1994
).
18.
O. J.
Kwon
,
C. M.
Kim
,
E. K.
Lee
, and
H.
Lee
,
Phys. Rev. E
53
,
1253
(
1996
).
19.
J. H.
Cho
,
M. S.
Ko
,
Y. J.
Park
, and
C. M.
Kim
,
Phys. Rev. E
65
,
036222
(
2002
).
20.
C. M.
Kim
,
G. S.
Yim
,
J. W.
Ryu
, and
Y. J.
Park
,
Phys. Rev. Lett.
80
,
5317
(
1998
).
21.
W. H.
Kye
and
C. M.
Kim
,
Phys. Rev. E
62
,
6304
(
2000
).
22.
A. A.
Koronovskii
and
A. E.
Hramov
,
Eur. Phys. J. B
62
,
447
(
2008
).
23.
E.
del Rio
and
S.
Elaskar
,
Int. J. Bifurcation Chaos
20
,
1185
(
2010
).
24.
S.
Elaskar
,
E.
del Rio
, and
J. M.
Donoso
,
Physica A
390
,
2759
(
2011
).
25.
E.
del Rio
,
S.
Elaskar
, and
J. M.
Donoso
,
Commun. Nonlinear Sci. Numer. Simul.
19
,
967
(
2014
).
26.
E.
del Rio
,
M. A. F.
Sanjuán
, and
S.
Elaskar
,
Commun. Nonlinear Sci. Numer. Simul.
17
,
3587
(
2012
).
27.
S.
Elaskar
,
E.
del Rio
,
G.
Krause
, and
A.
Costa
,
Nonlinear Dyn.
79
,
1411
1424
(
2015
).
28.
S.
Elaskar
,
E.
del Rio
, and
A.
Costa
,
J. Comput. Nonlinear Dyn.
12
,
031020
(
2017
).
29.
E.
del Rio
and
S.
Elaskar
, “An experimental investigation on noisy intermittency,” in Proceedings of the International Conference Theoretical Approaches in Non-Linear Dynamical Systems, Lodz, Poland, 2–5 December (Politechnika Łódzka, 2019), pp. 97–109.
30.
E.
del Rio
and
S.
Elaskar
,
Regul. Chaotic Dyn.
25
,
281
(
2020
).
31.
A. S.
Pikovsky
,
J. Phys. A
16
,
L109
(
1983
).
32.
E.
del Rio
,
S.
Elaskar
, and
V.
Makarov
,
Chaos
23
,
033112
(
2013
).
33.
E.
del Rio
and
S.
Elaskar
,
Int. J. Bifurcation Chaos
26
,
1650228
(
2016
).
You do not currently have access to this content.