The emergence of oscillatory dynamics (order) from chaotic fluctuations is a well-known phenomenon in turbulent thermoacoustic, aero-acoustic, and aeroelastic systems and is often detrimental to the system. We study the dynamics of two distinct turbulent thermoacoustic systems, bluff-body and swirl-stabilized combustors, where the transition occurs from the state of combustion noise (chaos) to thermoacoustic instability (order) via the route of intermittency. Using unweighted complex networks built from phase space cycles of the acoustic pressure oscillations, we characterize the topology of the phase space during various dynamical states in these combustors. We propose the use of network centrality measures derived from cycle networks as a novel means to characterize the number and stability of periodic orbits in the phase space and to study the topological transformations in the phase space during the emergence of order from chaos in the combustors. During the state of combustion noise, we show that the phase space consists of several unstable periodic orbits, which influence the phase space trajectory. As order emerges in the system dynamics, the number of periodic orbits decreases and their stability increases. At the onset of oscillatory dynamics, the phase space consists of a stable periodic orbit. We also use network centrality measures to identify the onset of thermoacoustic instability in both the combustors. Finally, we propose that the onset of oscillatory instabilities in turbulent systems is analogous to Bose–Einstein condensation transition observed for bosons, if we define phase space cycles as particles and the periodic orbits as energy levels.

1.
V.
Nair
,
G.
Thampi
,
S.
Karuppusamy
,
S.
Gopalan
, and
R. I.
Sujith
, “
Loss of chaos in combustion noise as a precursor of impending combustion instability
,”
Int. J. Spray Combust. Dyn.
5
,
273
290
(
2013
).
2.
M.
Murugesan
and
R. I.
Sujith
, “
Combustion noise is scale-free: Transition from scale-free to order at the onset of thermoacoustic instability
,”
J. Fluid Mech.
772
,
225
245
(
2015
).
3.
V.
Nair
and
R. I.
Sujith
, “
Precursors to self-sustained oscillations in aeroacoustic systems
,”
Int. J. Aeroacoust.
15
,
312
323
(
2016
).
4.
J.
Venkatramani
,
V.
Nair
,
R. I.
Sujith
,
S.
Gupta
, and
S.
Sarkar
, “
Multi-fractality in aeroelastic response as a precursor to flutter
,”
J. Sound Vib.
386
,
390
406
(
2017
).
5.
J.
Tony
,
E. A.
Gopalakrishnan
,
E.
Sreelekha
, and
R. I.
Sujith
, “
Detecting deterministic nature of pressure measurements from a turbulent combustor
,”
Phys. Rev. E
92
,
062902
(
2015
).
6.
V.
Nair
,
G.
Thampi
, and
R. I.
Sujith
, “
Intermittency route to thermoacoustic instability in turbulent combustors
,”
J. Fluid Mech.
756
,
470
(
2014
).
7.
J.
Venkatramani
,
V.
Nair
,
R. I.
Sujith
,
S.
Gupta
, and
S.
Sarkar
, “
Precursors to flutter instability by an intermittency route: A model free approach
,”
J. Fluids Struct.
61
,
376
391
(
2016
).
8.
F.
Culick
, “Unsteady motions in combustion chambers for propulsion systems,” Technical Report, NATO Research and Technology Organization Neuilly-Sur-Seine, France, 2006.
9.
R. I.
Sujith
and
V. R.
Unni
, “
Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors
,”
Phys. Fluids
32
,
061401
(
2020
).
10.
T. C.
Lieuwen
and
V.
Yang
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(
American Institute of Aeronautics and Astronautics
,
2005
).
11.
S. C.
Fisher
and
S. A.
Rahman
, and
Remembering The Giants: Apollo Rocket Propulsion Development
(
NASA
,
2009
).
12.
P.
Kriesels
,
M.
Peters
,
A.
Hirschberg
,
A.
Wijnands
,
A.
Iafrati
,
G.
Riccardi
,
R.
Piva
, and
J.
Bruggeman
, “
High amplitude vortex-induced pulsations in a gas transport system
,”
J. Sound Vib.
184
,
343
368
(
1995
).
13.
L.
Chatellier
,
J.
Laumonier
, and
Y.
Gervais
, “
Theoretical and experimental investigations of low mach number turbulent cavity flows
,”
Exp. Fluids
36
,
728
740
(
2004
).
14.
I.
Garrick
and
W. H.
Reed III
, “
Historical development of aircraft flutter
,”
J. Aircr.
18
,
897
912
(
1981
).
15.
A.
Larsen
and
J. H.
Walther
, “
Aeroelastic analysis of bridge girder sections based on discrete vortex simulations
,”
J. Wind Eng. Ind. Aerodyn.
67
,
253
265
(
1997
).
16.
N.
Marwan
,
S.
Schinkel
, and
J.
Kurths
, “Significance for a recurrence based transition analysis,” in Proceedings of the 2008 International Symposium on Nonlinear Theory and its Applications NOLTA08, Budapest, Hungary (IEICE Japan, 2008), pp. 412–415.
17.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
,
097610
(
2015
).
18.
R. I.
Sujith
and
V. R.
Unni
, “
Dynamical systems and complex systems theory to study unsteady combustion
,”
Proc. Combust. Inst.
(in press) (
2020
).
19.
T. C.
Lieuwen
, “
Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor
,”
J. Propul. Power
18
,
61
67
(
2002
).
20.
N.
Ananthkrishnan
,
S.
Deo
, and
F. E.
Culick
, “
Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber
,”
Combust. Sci. Technol.
177
,
221
248
(
2005
).
21.
V.
Nair
and
R. I.
Sujith
, “
Multifractality in combustion noise: Predicting an impending combustion instability
,”
J. Fluid Mech.
747
,
635
655
(
2014
).
22.
S. A.
Pawar
,
A.
Seshadri
,
V. R.
Unni
, and
R. I.
Sujith
, “
Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow
,”
J. Fluid Mech.
827
,
664
693
(
2017
).
23.
S. A.
Pawar
,
S.
Mondal
,
N. B.
George
, and
R. I.
Sujith
, “
Temporal and spatiotemporal analyses of synchronization transition in a swirl-stabilized combustor
,”
AIAA J.
57
,
836
847
(
2019
).
24.
A.
Raaj
,
J.
Venkatramani
, and
S.
Mondal
, “
Synchronization of pitch and plunge motions during intermittency route to aeroelastic flutter
,”
Chaos
29
,
043129
(
2019
).
25.
G.
Iacobello
,
L.
Ridolfi
, and
S.
Scarsoglio
, “
A review on turbulent and vortical flow analyses via complex networks
,”
Physica A
563
,
125476
(
2020
).
26.
Z.-K.
Gao
,
M.
Small
, and
J.
Kurths
, “
Complex network analysis of time series
,”
Europhys. Lett.
116
,
50001
(
2017
).
27.
H.
Gotoda
,
H.
Kinugawa
,
R.
Tsujimoto
,
S.
Domen
, and
Y.
Okuno
, “
Characterization of combustion dynamics, detection, and prevention of an unstable combustion state based on a complex-network theory
,”
Phys. Rev. Appl.
7
,
044027
(
2017
).
28.
V.
Godavarthi
,
V.
Unni
,
E. A.
Gopalakrishnan
, and
R. I.
Sujith
, “
Recurrence networks to study dynamical transitions in a turbulent combustor
,”
Chaos
27
,
063113
(
2017
).
29.
P.
Kasthuri
,
I.
Pavithran
,
S. A.
Pawar
,
R. I.
Sujith
,
R.
Gejji
, and
W.
Anderson
, “
Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor
,”
Chaos
29
,
103115
(
2019
).
30.
Y.
Okuno
,
M.
Small
, and
H.
Gotoda
, “
Dynamics of self-excited thermoacoustic instability in a combustion system: Pseudo-periodic and high-dimensional nature
,”
Chaos
25
,
043107
(
2015
).
31.
W. A.
Sethares
, “
Repetition and pseudo-periodicity
,”
Tatra Mt. Math. Publ.
23
,
1
16
(
2001
).
32.
H.
Wong
and
W. A.
Sethares
, “Estimation of pseudo-periodic signals,” in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2004), Vol. 2, pp. ii–557.
33.
T.
Kobayashi
,
S.
Murayama
,
T.
Hachijo
, and
H.
Gotoda
, “
Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning
,”
Phys. Rev. Appl.
11
,
064034
(
2019
).
34.
T.
Hachijo
,
H.
Gotoda
,
T.
Nishizawa
, and
J.
Kazawa
, “
Early detection of cascade flutter in a model aircraft turbine using a methodology combining complex networks and synchronization
,”
Phys. Rev. Appl.
14
,
014093
(
2020
).
35.
D.
Auerbach
,
P.
Cvitanović
,
J.-P.
Eckmann
,
G.
Gunaratne
, and
I.
Procaccia
, “
Exploring chaotic motion through periodic orbits
,”
Phys. Rev. Lett.
58
,
2387
(
1987
).
36.
D. P.
Lathrop
and
E. J.
Kostelich
, “
Characterization of an experimental strange attractor by periodic orbits
,”
Phys. Rev. A
40
,
4028
(
1989
).
37.
K.
Pawelzik
and
H. G.
Schuster
, “
Unstable periodic orbits and prediction
,”
Phys. Rev. A
43
,
1808
(
1991
).
38.
G. H.
Gunaratne
,
P. S.
Linsay
, and
M. J.
Vinson
, “
Chaos beyond onset: A comparison of theory and experiment
,”
Phys. Rev. Lett.
63
,
1
(
1989
).
39.
S. N.
Bose
, “
Plancks gesetz und lichtquantenhypothese
,”
Z. Phys.
26
,
178
181
(
1924
).
40.
F.
Reif
,
Fundamentals of Statistical and Thermal Physics
(
Waveland Press
,
2009
).
41.
A.
Einstein
, “
Quantum theory of the monatomic ideal gas
,”
Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Klasse
1924
,
261
267
.
42.
C.
Conti
,
M.
Leonetti
,
A.
Fratalocchi
,
L.
Angelani
, and
G.
Ruocco
, “
Condensation in disordered lasers: Theory, 3d+ 1 simulations, and experiments
,”
Phys. Rev. Lett.
101
,
143901
(
2008
).
43.
G.
Oren
,
A.
Bekker
, and
B.
Fischer
, “
Classical condensation of light pulses in a loss trap in a laser cavity
,”
Optica
1
,
145
148
(
2014
).
44.
M.
Evans
, “
Bose-Einstein condensation in disordered exclusion models and relation to traffic flow
,”
Europhys. Lett.
36
,
13
(
1996
).
45.
D.
Chowdhury
,
L.
Santen
, and
A.
Schadschneider
, “
Statistical physics of vehicular traffic and some related systems
,”
Phys. Rep.
329
,
199
329
(
2000
).
46.
M.
Tang
,
L.
Liu
, and
Z.
Liu
, “
Influence of dynamical condensation on epidemic spreading in scale-free networks
,”
Phys. Rev. E
79
,
016108
(
2009
).
47.
P. L.
Krapivsky
,
S.
Redner
, and
F.
Leyvraz
, “
Connectivity of growing random networks
,”
Phys. Rev. Lett.
85
,
4629
(
2000
).
48.
G.
Bianconi
and
A.-L.
Barabási
, “
Bose-Einstein condensation in complex networks
,”
Phys. Rev. Lett.
86
,
5632
(
2001
).
49.
G.
Su
,
X.
Zhang
, and
Y.
Zhang
, “
Condensation phase transition in nonlinear fitness networks
,”
Europhys. Lett.
100
,
38003
(
2012
).
50.
J.
Zhang
and
M.
Small
, “
Complex network from pseudoperiodic time series: Topology versus dynamics
,”
Phys. Rev. Lett.
96
,
238701
(
2006
).
51.
S. A.
Pawar
, “Studying thermoacoustic systems in the framework of synchronization theory,” Ph.D. thesis (Indian Institute of Technology Madras, 2018).
52.
V.
Godavarthi
,
S. A.
Pawar
,
V. R.
Unni
,
R. I.
Sujith
,
N.
Marwan
, and
J.
Kurths
, “
Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor
,”
Chaos
28
,
113111
(
2018
).
53.
F.
Takens
, “Dynamical Systems of Turbulence, Lecture Notes in Mathematics Vol. 898 (Springer, 1981), 366 p.
54.
J.
Zhang
,
X.
Luo
, and
M.
Small
, “
Detecting chaos in pseudoperiodic time series without embedding
,”
Phys. Rev. E
73
,
016216
(
2006
).
55.
V.
Nair
and
R. I.
Sujith
, “
Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification
,”
Chaos
23
,
033136
(
2013
).
56.
M.
Bastian
,
S.
Heymann
, and
M.
Jacomy
, “
Gephi: An open source software for exploring and manipulating networks
,”
ICWSM
8
,
361
362
(
2009
).
57.
S.
Boccaletti
,
V.
Latora
,
Y.
Moreno
,
M.
Chavez
, and
D.-U.
Hwang
, “
Complex networks: Structure and dynamics
,”
Phys. Rep.
424
,
175
308
(
2006
).
58.
G.
Sabidussi
, “
The centrality index of a graph
,”
Psychometrika
31
,
581
603
(
1966
).
59.
L. C.
Freeman
, “
A set of measures of centrality based on betweenness
,”
Sociometry
40
,
35
41
(
1977
).
60.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of ‘small-world’ networks
,”
Nature
393
,
440
442
(
1998
).
61.
A. P.
Reddy
,
R. I.
Sujith
, and
S.
Chakravarthy
, “
Swirler flow field characteristics in a sudden expansion combustor geometry
,”
J. Propul. Power
22
,
800
808
(
2006
).
62.
Y.
Huang
and
V.
Yang
, “
Dynamics and stability of lean-premixed swirl-stabilized combustion
,”
Prog. Energy Combust. Sci.
35
,
293
364
(
2009
).
You do not currently have access to this content.