We study scenarios of the appearance of strange homoclinic attractors (which contain only one fixed point of saddle type) for one-parameter families of three-dimensional non-orientable maps. We describe several types of such scenarios that lead to the appearance of discrete homoclinic attractors including Lorenz-like and figure-8 attractors (which contain a saddle fixed point) as well as two types of attractors of spiral chaos (which contain saddle-focus fixed points with the one-dimensional and two-dimensional unstable manifolds, respectively). We also emphasize peculiarities of the scenarios and compare them with the known scenarios in the orientable case. Examples of the implementation of the non-orientable scenarios are given in the case of three-dimensional non-orientable generalized Hénon maps.

1.
E.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
M.
Hénon
, “A two-dimensional mapping with a strange attractor,” in The Theory of Chaotic Attractors (Springer, New York, 1976), pp. 94–102.
3.
L. P.
Shilnikov
, “The theory of bifurcations and turbulence. I,” in Methods of Qualitative Theory of Differential Equations (Gorky, 1986), pp. 150–163 (in Russian) [English translation in Selecta Math. Sov. 10(1), 43–53 (1991)].
4.
A. S.
Gonchenko
,
S. V.
Gonchenko
, and
L. P.
Shilnikov
, “
Towards scenarios of chaos appearance in three-dimensional maps
,”
Rus. J. Nonlin. Dyn.
8
,
3
28
(
2012
) (in Russian).
5.
L. D.
Landau
, “
On the problem of turbulence
,”
Dokl. Akad. Nauk SSSR
44
,
339
342
(
1944
) (in Russian).
6.
E.
Hopf
, “
A mathematical example displaying the features of turbulence
,”
Commun. Pure Appl. Math.
1
,
303
322
(
1948
).
7.
D.
Ruelle
and
F.
Takens
, “
On the nature of turbulence
,”
Commun. Math. Phys.
20
(
3
),
167
192
(
1971
).
8.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1978
).
9.
V. S.
Afraimovich
and
L. P.
Shilnikov
, “Invariant two-dimensional tori, their breakdown and stochasticity,” in Methods of Qualitative Theory of Differential Equations (Gorky, 1983), pp. 3–26 [English translation in Am. Math. Soc. Transl., Ser. 2 149, 201–212 (1991)].
10.
Z.
Galias
and
W.
Tucker
, “
Is the Hénon attractor chaotic?
,”
Chaos
25
,
033102
(
2015
).
11.
A. S.
Gonchenko
,
S. V.
Gonchenko
,
A. O.
Kazakov
, and
A. D.
Kozlov
, “
Elements of contemporary theory of dynamical chaos: A tutorial. Part I. Pseudohyperbolic attractors
,”
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
28
,
1830036
(
2018
).
12.
S. V.
Gonchenko
,
A. S.
Gonchenko
,
A. O.
Kazakov
, and
E. A.
Samylina
, “
On discrete Lorenz-like attractors
,”
Chaos
31
,
023117
(
2021
).
13.
A. S.
Gonchenko
,
S. V.
Gonchenko
,
A. O.
Kazakov
,
A. D.
Kozlov
, and
Y. V.
Bakhanova
, “
Mathematical theory of dynamic chaos and its applications: Review Part 2. Spiral chaos of three-dimensional flows
,”
Izv. Vuz. Appl. Nonlin. Dyn.
27
,
7
52
(
2019
).
14.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
, “
The origin and structure of the Lorenz attractor
,”
Sov. Phys. Dokl.
22
,
253
255
(
1977
).
15.
J.
Marsden
, “Attempts to relate the Navier-Stokes equations to turbulence,” in Turbulence Seminar, Lecture Notes in Mathematics Vol. 615, edited by P. Bernard and T. Ratiu (Springer-Verlag, New York, 1977).
16.
L. P.
Shilnikov
, ”Bifurcation theory and the Lorenz model,” in The Hopf Bifurcation and Its Applications (in Russian) [Translated to Russian: J. Marsden and M. MacKraken, “Bifurcation of birth of cycle and its applications,” M.:Mir 317–336 (1980)].
17.
S.
Gonchenko
,
I.
Ovsyannikov
,
C.
Simo
, and
D.
Turaev
, “
Three-dimensional Henon-like maps and wild Lorenz-like attractors
,”
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
15
,
3493
3508
(
2005
).
18.
S. V.
Gonchenko
,
A. S.
Gonchenko
,
I. I.
Ovsyannikov
, and
D. V.
Turaev
, “
Examples of Lorenz-like attractors in Henon-like maps
,”
Math. Model. Nat. Phen.
8
,
48
70
(
2013
).
19.
A. S.
Gonchenko
,
S. V.
Gonchenko
,
A. O.
Kazakov
, and
D.
Turaev
, “
Simple scenarios of onset of chaos in three-dimensional maps
,”
Int. J. Bifurcat. Chaos Appl. Sci. Eng.
24
,
25
(
2014
).
20.
A.
Gonchenko
and
S.
Gonchenko
, “
Variety of strange pseudohyperbolic attractors in three-dimensional generalized Henon maps
,”
Physica D
337
,
43
57
(
2016
).
21.
A. V.
Borisov
,
A. O.
Kazakov
, and
I. R.
Sataev
, “
The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top
,”
Regul. Chaotic Dyn.
19
,
718
733
(
2014
).
22.
A. V.
Borisov
,
A. O.
Kazakov
, and
I. R.
Sataev
, “
Spiral chaos in the nonholonomic model of a Chaplygin top
,”
Regul. Chaotic Dyn.
21
,
939
954
(
2016
).
23.
S. V.
Gonchenko
,
A. S.
Gonchenko
, and
A. O.
Kazakov
, “
Richness of chaotic dynamics in nonholonomic models of a Celtic stone
,”
Regul. Chaotic Dyn.
15
,
521
538
(
2013
).
24.
A.
Gonchenko
and
E.
Samylina
, “
On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a Celtic stone
,”
Radiophys. Quantum Electron.
62
,
369
384
(
2019
).
25.
A.
Chenciner
and
G.
Iooss
, “
Bifurcations de tores invariants
,”
Arch. Ration. Mech. Anal.
1249
,
109
198
(
1979
).
26.
A. L.
Shilnikov
, “
On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model
,”
Physica D
62
,
338
346
(
1993
).
27.
V. S.
Afraimovich
,
V. V.
Bykov
, and
L. P.
Shilnikov
, “
On attracting structurally unstable limit sets of Lorenz attractor type
,”
Trans. Mosc. Math. Soc.
44
,
153
216
(
1982
).
28.
D. V.
Turaev
and
L. P.
Shilnikov
, “
Pseudo-hyperbolicity and the problem on periodic perturbations of Lorenz-like attractors
,”
Dokl. Math.
77
(
1
),
17
21
(
2008
).
29.
H. W.
Broer
,
G. B.
Huitema
,
F.
Takens
, and
B. L. J.
Braaksma
, “
Unfoldings and bifurcations of quasiperiodic tori
,”
Mem. Am. Math. Soc.
83
,
421
(
1990
).
30.
R.
Vitolo
,
H. W.
Broer
, and
C.
Simó
, “
Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems
,”
Regul. Chaotic Dyn.
16
,
154
184
(
2011
).
31.
E.
Karatetskaia
,
A.
Shykhmamedov
, and
A.
Kazakov
, “
Shilnikov attractors in three-dimensional orientation-reversing maps
,”
Chaos
31
,
011102
(
2021
).
32.
L. P.
Shilnikov
,
A. L.
Shilnikov
,
D. V.
Turaev
, and
L. O.
Chua
,
Methods of Qualitative Theory in Nonlinear Dynamics. Part I
(
World Scientific
,
1998
); Part II (World Scientific, 2001).
33.
A. S.
Gonchenko
and
A. D.
Kozlov
, “
On scenarios of chaos appearance in three-dimensional nonorientable maps (in Russian)
,”
Zhurnal SVMO
18
,
17
29
(
2016
).
You do not currently have access to this content.