A mathematical model describing nonlinear vibrations of size-dependent rectangular plates is proposed. The plates are treated as the Cosserat continuum with bounded rotations of their particles (pseudo-continuum). The governing partial differential equations (PDEs) and boundary/initial conditions are obtained using the von Kármán geometric relations, and they are yielded by the energetic Hamilton principle. The derived mixed-form PDEs are reduced to ordinary differential equations and algebraic equations (AEs) using (i) the Galerkin–Krylov–Bogoliubov method (GKBM) in higher approximations, and then they are solved with the help of a combination of the Runge–Kutta methods of the second and fourth order, (ii) the finite difference method (FDM), and (iii) the Newmark method. The convergence of FDM vs the interval of the space coordinate grids and of GKBM vs the number of employed terms of the approximating function is investigated. The latter approach allows for achieving reliable results by taking account of almost infinite-degree-of-freedom approximation to the regular and chaotic dynamics of the studied plates. The problem of stability loss of the size-dependent plates under harmonic load is also tackled.

1.
M.
Gad-el-Hak
,
The MEMS Handbook
(
CRC Press
,
Boca Raton
,
FL
,
2002
).
2.
W. J.
Chang
,
H. L.
Lee
, and
T. Y. F.
Chen
,
Ultramicroscopy
108
(
7
),
619
(
2008
).
3.
H. L.
Lee
and
W. J.
Chang
,
Ultramicroscopy
108
(
8
),
707
(
2008
).
4.
M. H.
Kahrobaiyan
,
M.
Asghari
,
M.
Rahaeifard
, and
M. T.
Ahmadian
,
Int. J. Eng. Sci.
48
(
12
),
1985
(
2010
).
5.
Y. C.
Hu
,
C. M.
Chang
, and
S. C.
Huang
,
Sens. Actuators A
112
(
1
),
155
(
2004
).
6.
F. Y.
Lun
,
P.
Zhang
,
F. B.
Gao
, and
H. G.
Jia
,
Microsyst. Technol.
120
,
61
(
2006
).
7.
A.
Seleim
,
S.
Towfighian
,
E.
Delande
,
E.
Abdel-Rahman
, and
G.
Heppler
,
Nonlinear Dyn.
69
,
615
(
2012
).
8.
Q.
Chen
,
L.
Huang
,
Y. C.
Lai
,
C.
Grebogi
, and
D.
Dietz
,
Nano. Lett.
10
(
2
),
406
(
2010
).
9.
X.
Ni
,
L.
Ying
,
Y. C.
Lai
,
Y.
Do
, and
C.
Grebogi
,
Phys. Rev. E
87
,
052911
(
2013
).
10.
K.
Park
,
Q.
Chen
, and
Y.-C.
Lai
,
Phys. Rev. E
77
,
026210
(
2008
).
11.
P.
Hessari
,
Y.
Do
,
Y. C.
Lai
,
J.
Chae
,
C. W.
Park
, and
G.
Lee
,
Phys. Rev. B
89
,
134304
(
2014
).
12.
S.
Gutschmidt
and
O.
Gottlieb
,
Int. J. Bifurcation Chaos
20
,
605
(
2010
).
13.
Q.
Chen
,
Y. C.
Lai
,
J.
Chae
, and
Y.
Do
,
Phys. Rev. B
87
,
144304
(
2013
).
14.
E.
Maani Miandoab
,
A.
Yousefi-Koma
,
H.
Nejat Pishkenari
, and
F.
Tajaddodianfar
,
Commun. Nonlinear Sci. Numer. Simul.
22
,
611
(
2015
).
15.
F.
Tajaddodianfar
and
M. R. H.
Yazdi
,
Int. J. Bifurcation Chaos
25
(
8
),
1550106
(
2015
).
16.
Y. C.
Wang
,
S. G.
Adams
,
J. S.
Thorp
,
N. C.
MacDonald
,
P.
Hartwell
, and
F.
Bertsch
,
IEEE Trans. Circuits Syst. I
45
(
10
),
1013
(
1998
).
17.
B. E.
DeMartini
,
H. E.
Butterfield
,
J.
Moehlis
, and
K. L.
Turner
,
J. Microelectromech. Syst.
16
(
6
),
1314
(
2007
).
18.
H. S.
Haghighi
and
A. H.
Markazi
,
Commun. Nonlinear Sci. Numer. Simul.
15
(
10
),
3091
(
2010
).
19.
M. P.
Aghababa
,
Chin. Phys. B
21
(
10
),
100505
(
2012
).
20.
A. R.
Askari
and
M.
Tahani
,
Physica E
86
,
262
(
2017
).
21.
N.
Ding
,
X.
Xu
,
Z.
Zheng
, and
E.
Li
,
Acta Mech.
228
,
3561
(
2017
).
22.
F.
Yang
,
A. C. M.
Chong
,
D. C. C.
Lam
, and
P.
Tong
,
Int. J. Solids Struct.
39
,
2731
(
2002
).
23.
A. C.
Eringen
and
D. G. B.
Edelen
,
Int. J. Eng. Sci.
10
(
3
),
233
(
1972
).
24.
A. C.
Eringen
, “
Theory of micropolar elasticity
,” in
Microcontinuum Field Theories
(
Springer
,
1999
), pp.
101
248
.
25.
R. D.
Mindlin
,
Int. J. Solids Struct.
1
(
4
),
417
(
1965
).
26.
J.
Hamilton
and
W.
Wolfer
,
Surf. Sci.
603
(
9
),
1284
(
2009
).
27.
G. C.
Tsiatas
,
Int. J. Solids Struct.
46
(
13
),
2757
(
2009
).
28.
H. M.
Ma
,
X. L.
Gao
, and
J. N.
Reddy
,
Acta Mech.
220
,
217
(
2011
).
29.
Y.-G.
Wang
,
W.-H.
Lin and
, and
N.
Liu
,
Int. J. Mech. Sci.
71
,
51
(
2013
).
30.
I.
Karimipour
,
Y.
Tadi Beni
, and
A. H.
Akbarzadeh
,
Commun. Nonlinear Sci. Numer. Simul.
78
,
104856
(
2019
).
31.
M. H.
Ghayesh
and
H.
Farokhi
,
Mech. Sys. Signal Process.
109
,
220
(
2018
).
32.
M.
Tahani
,
A. R.
Ansari
,
Y.
Mohandes
, and
B.
Hassani
,
Int. J. Mech. Sci.
94–95
,
185
(
2015
).
33.
A.
Kazemi
and
R.
Vatankhah
,
Eur. J. Mech. A Solids
86
,
104185
(
2021
).
34.
K. F.
Wang
,
T.
Kitamura
, and
B.
Wang
,
Int. J. Mech. Sci.
99
,
288
(
2015
).
35.
X.
Wang
,
J.
Jihai Yuan
, and
H.
Zhai
,
Nonlinear Eng.
8
,
461
(
2019
).
36.
J.
Awrejcewicz
,
V. A.
Krysko
,
I. V.
Papkova
, and
A. V.
Krysko
,
Deterministic Chaos in One-Dimensional Continuous Systems
(
World Scientific
,
Singapore
,
2016
).
37.
G.
Li
and
N. R.
Aluru
,
Sens. Actuators A
91
(
3
),
278
(
2001
).
38.
W. M.
Zhang
and
G.
Meng
,
Sens. Actuators A
119
(
2
),
291
(
2005
).
39.
S. G.
Adams
,
F. M.
Bertsch
,
K. A.
Shaw
, and
N. C.
MacDonald
,
J. Microelectromech. Syst.
7
(
2
),
172
(
1998
).
40.
W. H.
Zhang
,
R.
Baskaran
, and
K. L.
Tumer
,
Sens. Actuators A
102
(
1–2
),
139
(
2002
).
41.
S.
Lee
,
J.
Kim
,
W.
Moon
,
J.
Choi
,
I.
Park
, and
D.
Bae
,
Nonlinear Dyn.
54
,
53
(
2008
).
42.
R.
Lozi
, “
Can we trust in numerical computations of chaotic solutions of dynamical systems?
,” in
Topology and Dynamics of Chaos
(
World Scientific
,
2013
), pp.
63
98
.
43.
A. V.
Krysko
,
J.
Awrejcewicz
,
A. A.
Zakharova
,
I. V.
Papkova
, and
V. A.
Krysko
,
Nonlinear Dyn.
91
,
2271
(
2018
).
44.
V. I.
Malyi
, “
Theoretical determination of the five physical constants of the Toupin-Mindlin gradient elasticity for polycrystalline materials
,” in
Nonlinear Dynamics of Discrete and Continuous Systems. Advanced Structured Materials
, edited by
A.
Abramyan
,
I.
Andrianov
, and
V.
Gaiko
(
Springer Nature
,
2021
), Vol. 139, pp.
145
154
.
45.
N.
Kryloff (N. Krylov)
and
N.
Bogolĭubov
, “
Sur certains théorèmes concernant l'existence d'équations différentielles aux dérivées partielles du type hyperbolique,
Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et na
,
1931
(
3
),
323–344
.
46.
S.
Faedo
, “
Un nuovo metodo per lanalisi esistenziale e quantitative dei problemi di propogazione
,”
Ann. Scuola Norm Sur. Pisa
1
(1–4),
1
41
(
1949
).
47.
A. S.
Volmir
,
The Nonlinear Dynamics of Plates and Shells
(
Foreign Technology Division
,
Wright-Patterson AFB
,
1974
).
48.
B.
Budiansky
and
R. S.
Roth
, Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells, TN D-1510 (NASA, 1952), pp. 597–606.
49.
T.
Karman
and
H. S.
Tsien
, “
The buckling of thin cylindrical shells under axial compression
,”
J. Acron. Sci.
8
(
8
),
303
312
(
1941
).
50.
A. C.
Shiau
,
T. T.
Soong
, and
R. S.
Roth
, “
Dynamic buckling of conical shells with imperfections
,”
AIAA J.
12
(
6
), 755–759 (
1974
).
51.
H.
Kantz
, “
A robust method to estimate the maximal Lyapunov exponent of a time series
,”
Phys. Lett. A
185
,
77
87
(
1994
).
52.
S.
Sato
,
M.
Sano
, and
Y.
Sawada
, “
Practical methods of measuring the generalized dimension and the largest lyapunov exponent in high dimensional chaotic systems
,”
Prog. Theor. Phys.
77
,
1
5
(
1987
).
53.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
54.
M. T.
Rosenstein
, “
A practical method for calculating largest Lyapunov exponents from small data sets
,” in
Neuro Muscular Research Center and Department of Biomedical Engineering
, edited by
M. T.
Rosenstein
,
J. J.
Collins
, and
C. J.
De Luca
(
Boston University
,
1992
).
You do not currently have access to this content.